日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}是一個有n項的等差數(shù)列,其公差為d,前n項和Sn=11,,又知a1,a7,a10分別是另一個等比數(shù)列的前三項,求這個等差數(shù)列{an}的項數(shù)n.

          解:由條件可得a7=4+6d,a10=4+9d,且
          故有 (4+6d)2=4(4+9d),解得d=-
          Sn=11=4n+=4n-,解得 n=3,或n=22,
          而n=3不符合題意,故舍去.
          故 n=22.
          分析:由條件可得 (4+6d)2=4(4+9d),解得d=-,再根據(jù) Sn=11=4n+,運算求得n的值,并進(jìn)行檢驗.
          點評:本題主要考查等差數(shù)列的定義和性質(zhì),等差數(shù)列的通項公式,前n項和公式的應(yīng)用,等比數(shù)列的定義和性質(zhì),屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}是等比數(shù)列,且每一項都是正數(shù),若a1,a49是2x2-7x+6=0的兩個根,則a1•a2•a25•a48•a49的值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•樂山一模)已知數(shù)列{an}是等差數(shù)列,a5=5,若(6-a1
          OB
          =a2
          OA
          +a3
          OC
          ,且A、B、C三點共線(O為該直線外一點);點列(n,bn)在函數(shù)f(x)=log
          1
          2
          x的反函數(shù)的圖象上.
          (1)求an和bn;
          (2)記數(shù)列Cn=anbn+bn(n∈N*),若{Cn}的前n項和為Tn,求使不等式
          3-Tn
          n+3
          1
          64
          成立的最小自然數(shù)n的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}是以d為公差的等差數(shù)列,數(shù)列{bn}是以q為公比的等比數(shù)列.
          (1)若數(shù)列{bn}的前n項和為Sn,且a1=b1=d=2,S3<5b2+a88-180,求整數(shù)q的值;
          (2)在(1)的條件下,試問數(shù)列{bn}中是否存在一項bk,使得bk恰好可以表示為該數(shù)列中連續(xù)P(P∈N,P≥2)項和?請說明理由;
          (3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的約數(shù))求證:數(shù)列{bn}中每一項都是數(shù)列{an}中的項.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•普陀區(qū)一模)已知數(shù)列{an}是等差數(shù)列,其前n項和為Sn,若S10=20,S20=60,則
          S30S10
          =
          6
          6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•揭陽一模)已知數(shù)列{an}是公比q>1的等比數(shù)列,且a1+a2=40,a1a2=256,又 bn=log2an
          (1)求數(shù)列{bn}的通項公式;
          (2)若Tn+1-Tn=bn(n∈N*),且T1=0.求證:對?n∈N*,n≥2有
          1
          3
          n
          i=2
          1
          Ti
          3
          4

          查看答案和解析>>

          同步練習(xí)冊答案