日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知直三棱柱的底面是直角三角形,

          求證:平面;

          求二面角的余弦值;

          求點(diǎn)到平面的距離.

          【答案】證明見解析

          【解析】

          ()根據(jù)直三棱柱中可以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,求解平面的法向量并證明即可.

          ()分別求解ABD的一個(gè)法向量與平面的一個(gè)法向量,利用二面角的向量公式求解即可.

          ()根據(jù)線面垂直的關(guān)系可得點(diǎn)到平面的距離為,再求解即可.

          依題意,以C為原點(diǎn),CBx軸,y軸,CAz軸,建立空間直角坐標(biāo)系,

          ,

          ,,

          證明:,

          設(shè)平面的一個(gè)法向量為,則,

          ,則,

          ,即,

          平面

          ,

          設(shè)平面ABD的一個(gè)法向量為,則,

          ,則,

          又平面的一個(gè)法向量為,

          ,

          即二面角的余弦值為;

          設(shè)點(diǎn)到平面的距離為d,則易知,而,

          點(diǎn)到平面的距離為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某農(nóng)科站技術(shù)員為了解某品種樹苗的生長(zhǎng)情況,在該批樹苗中隨機(jī)抽取一個(gè)容量為100的樣本,測(cè)量樹苗高度(單位:).經(jīng)統(tǒng)計(jì),高度在區(qū)間內(nèi),將其按,,,,分成6組,制成如圖所示的頻率分布直方圖,其中高度不低于的樹苗為優(yōu)質(zhì)樹苗.

          附:

          ,其中

          1)求頻率分布直方圖中的值;

          2)已知所抽取的這100棵樹苗來(lái)自于甲、乙兩個(gè)地區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表所示,將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有%的把握認(rèn)為優(yōu)質(zhì)樹苗與地區(qū)有關(guān)?

          甲地區(qū)

          乙地區(qū)

          合計(jì)

          優(yōu)質(zhì)樹苗

          5

          非優(yōu)質(zhì)樹苗

          25

          合計(jì)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某次數(shù)學(xué)知識(shí)比賽中共有6個(gè)不同的題目,每位同學(xué)從中隨機(jī)抽取3個(gè)題目進(jìn)行作答,已知這6個(gè)題目中,甲只能正確作答其中的4個(gè),而乙正確作答每個(gè)題目的概率均為,且甲、乙兩位同學(xué)對(duì)每個(gè)題目的作答都是相互獨(dú)立、互不影響的.

          1)求甲、乙兩位同學(xué)總共正確作答3個(gè)題目的概率;

          2)若甲、乙兩位同學(xué)答對(duì)題目個(gè)數(shù)分別是,,由于甲所在班級(jí)少一名學(xué)生參賽,故甲答對(duì)一題得15分,乙答對(duì)一題得10分,求甲乙兩人得分之和的期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】現(xiàn)有橡皮泥制作的底面半徑為5,高為9的圓錐和底面半徑為,高為8的圓柱各一個(gè).若將它們重新制作成總體積與各自的高均保持不變,但底面半徑相同的新的圓錐與圓柱各一個(gè),則新的底面半徑為_________;若新圓錐的內(nèi)接正三棱柱表面積取到最大值,則此正三棱柱的底面邊長(zhǎng)為_________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,是一個(gè)三棱錐,是圓的直徑,是圓上的點(diǎn),垂直圓所在的平面,,分別是棱的中點(diǎn).

          1)求證:平面;

          2)若二面角,求與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】四棱柱的底面是菱形,平面,點(diǎn)是側(cè)棱上的點(diǎn)

          1)證明:平面;

          2)若的中點(diǎn),求四棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)滿足方程.

          1)求點(diǎn)M的軌跡C的方程;

          2)作曲線C關(guān)于軸對(duì)稱的曲線,記為,在曲線C上任取一點(diǎn),過(guò)點(diǎn)P作曲線C的切線l,若切線l與曲線交于A,B兩點(diǎn),過(guò)點(diǎn)AB分別作曲線的切線,證明的交點(diǎn)必在曲線C.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知定義在上的偶函數(shù)滿足,且時(shí),,則函數(shù)上的所有零點(diǎn)之和為(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

          (Ⅱ)討論函數(shù)的單調(diào)性;

          (Ⅲ)對(duì)于任意,都有,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案