日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,設(shè)圓x2+y2=12與拋物線x2=4y相交于A,B兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn).
          (I)若過(guò)點(diǎn)F且斜率為1的直線l與拋物線和圓交于四個(gè)不同的點(diǎn),從左至右依次為P1,P2,P3,P4,求|P1P2|+|P3+P4|的值;
          (II)若直線m與拋物線相交于M,N兩點(diǎn),且與圓相切,切點(diǎn)D在劣弧
          AB
          上,求|MF|+|NF|的取值范圍.
          分析:(I)由圓的方程和拋物線的方程聯(lián)解,求得交點(diǎn)A、B的坐標(biāo),從而判斷直線l與圓交于P1、P3,直線l與拋物線交于P2、P4,
          另|P1P2|+|P3+P4|的表達(dá)式用P1,P2,P3,P4的四點(diǎn)的橫坐標(biāo)表示,然后根據(jù)根與系數(shù)的關(guān)系,代入表達(dá)式,即解.
          (II)先設(shè)直線m的方程y=k+b,交點(diǎn)M、N坐標(biāo),再用點(diǎn)M、N縱坐標(biāo)表示出|MF|+|NF|,由與圓相切,得到k與b的關(guān)系,
          消去k用b表示|MF|+|NF|,即得到關(guān)于b的一個(gè)函數(shù),由kOA=-
          2
          2
          ,kOB=
          2
          2
          ,得到k的范圍,由此求得b的范圍,
          再將b的代入|MF|+|NF|的函數(shù)關(guān)系式中并求出其范圍.
          解答:解:(1)由
          x2+y2=12
          x2=4y
          ,得
          x=2
          2
          y=2
          x=-2
          2
          y=2

          即A(-2
          2
          ,2),B(2
          2
          ,2).
          ∵點(diǎn)F坐標(biāo)為(0,1),∴kFB-
          1
          2
          2
          =
          2
          4
          ,所以klkFB
          ,
          所以直線l與圓交于P1、P3兩點(diǎn),與拋物線交于P2、P4兩點(diǎn),
          設(shè)P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4
          把直線l方程:y=x+1代入x2=4y,得x2-4x-4=0,∴x2+x4=4;
          把直線l方程:y=x+1代入x2+y2=12,得2x2+2x-11=0,∴x1+x3=-1
          |P1P2|=
          1+k2
          •|x1-x2|=
          2
          (x2-x1)

          |P3P4|=
          1+k2
          •|x3-x4|=
          2
          (x4-x3)

          |P1P2|+|P3P4|=
          2
          [(x2-x1)+(x4-x3)]
          =
          2
          [(x2+x4)-(x1+x3)]

          =
          2
          [4-(-1)]=5
          2

          所以|P1P2|+|P3+P4|的值等于5
          2

          (II)設(shè)直線m的方程為y=k+b(b>0),
          代入拋物線方程得x2-4kx-4b=0,
          設(shè)點(diǎn)M(x1,y1),N(x2,y2),則x1+x2=4k,
          則y1+y2=k(x1+x2)+2b=4k2+2b,
          ∵直線m與該圓相切,∴
          b
          k2+1
          =
          12
          即 k2=
          b2
          12
          -1
          ,
          又|MF|=y1+1,|NF|=y2+1,
          ∴|MF|+|NF|=y1+y2+2=4k2+2b+2=
          b2
          3
          +2b-2=
          1
          3
          (b+3)2 -5

          kOA=-
          2
          2
          kOB=
          2
          2
          ,∴分別過(guò)A、B的圓的切線的斜率為
          2
          ,-
          2

          k∈[-
          2
          2
          ]
          ∴0≤k2≤2,∴0≤
          b2
          12
          -1≤12,又b>0
          ,∴b∈[2
          3
          ,6]

          所以|MF|+|NF|的取值范圍為[2+4
          3
          ,22]
          點(diǎn)評(píng):此題考查用坐標(biāo)法解決圓錐曲線問(wèn)題,在解題過(guò)程中還考查了弦長(zhǎng)公式的運(yùn)用,同時(shí)還考查學(xué)生的計(jì)算技巧中設(shè)而不求的方法.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,過(guò)圓x2+y2=4與x的兩個(gè)交點(diǎn)A、B,作圓的切線AC、BD,再過(guò)圓上任意一點(diǎn)H作圓的切線,交AC、BD于C、D兩點(diǎn),設(shè)AD、BC的交點(diǎn)為R.
          (1)求動(dòng)點(diǎn)R的軌跡E方程;
          (2)過(guò)曲線E的右焦點(diǎn)作直線l交曲線E于M、N兩點(diǎn),交y軸于P點(diǎn),記
          PM
          =λ1
          MF
          ,
          PN
          =λ2
          NF
          ,求證:λ12為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•臨沂二模)如圖,過(guò)圓x2+y2=4與x軸的兩個(gè)交點(diǎn)A、B作圓的切線AC、BD,再過(guò)圓上任意一點(diǎn)H作圓的切線,交AC、BD與C、D兩點(diǎn),設(shè)AD、BC的交點(diǎn)為R.
          (I)求動(dòng)點(diǎn)R的軌跡E的方程;
          (II)設(shè)E的上頂點(diǎn)為M,直線l交曲線E于P、Q兩點(diǎn),問(wèn):是否存在這樣的直線l,使點(diǎn)G(1,0)恰為△PQM的垂心?若存在,求出直線l的方程,若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011年浙江省紹興市高三質(zhì)量調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          如圖,設(shè)圓x2+y2=12與拋物線x2=4y相交于A,B兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn).
          (I)若過(guò)點(diǎn)F且斜率為1的直線l與拋物線和圓交于四個(gè)不同的點(diǎn),從左至右依次為P1,P2,P3,P4,求|P1P2|+|P3+P4|的值;
          (II)若直線m與拋物線相交于M,N兩點(diǎn),且與圓相切,切點(diǎn)D在劣弧上,求|MF|+|NF|的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011年浙江省紹興市高三質(zhì)量調(diào)研數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          如圖,設(shè)圓x2+y2=12與拋物線x2=4y相交于A,B兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn).
          (I)若過(guò)點(diǎn)F且斜率為1的直線l與拋物線和圓交于四個(gè)不同的點(diǎn),從左至右依次為P1,P2,P3,P4,求|P1P2|+|P3+P4|的值;
          (II)若直線m與拋物線相交于M,N兩點(diǎn),且與圓相切,切點(diǎn)D在劣弧上,求|MF|+|NF|的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案