日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,直三棱柱的一個底面ABC內(nèi)接于圓O,AB是圓O的直徑.
          (1)求證:平面ACD⊥平面ADE;
          (2)若AB=2,BC=1,,求幾何體EDABC的體積V.

          【答案】分析:(1)由已知中直三棱柱的一個底面ABC內(nèi)接于圓O,AB是圓O的直徑,我們易得到DC⊥BC.BC⊥AC.由線面垂直的判定定理,可得到BC⊥平面ACD,DE⊥平面ACD,再由面面垂直的判定定理,即可得到平面ACD⊥平面ADE.
          (2)由圖可知,幾何體EDABC即為四棱錐A-DCBE.AC即為棱錐的高,分別求出棱錐的高及底面積,代入棱錐體積公式,即可得到答案.
          解答:解:(1)證明:由直棱柱性質(zhì)知:DC⊥平面ABC,
          又BC?平面ABC,∴DC⊥BC.(2分)
          ∵AB是圓O的直徑,∴BC⊥AC.
          又DC∩AC=C,∴BC⊥平面ACD.(4分)
          又DE∥BC,∴DE⊥平面ACD,(6分)
          又∵DE?平面ADE,
          ∴平面ACD⊥平面ADE,(8分)
          (2)由圖可知,幾何體EDABC即為四棱錐A-DCBE.
          由(1)可得AC⊥DC,又AC⊥BC,DC∩BC=C,∴AC⊥面CBED,(10分)
          ∵AB=2,BC=1,,∴,
          又矩形CBDE的面積,(12分)

          因此,幾何體EDABC的體積為1.(14分)
          點評:本題考查的知識點是平面與平面垂直的判定及棱錐的體積公式,熟練掌握空間幾何體的幾何特征,根據(jù)已知判斷出證明及解答需要的線面關(guān)系是解答本題的關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,直三棱柱的一個底面ABC內(nèi)接于圓O,AB是圓O的直徑.
          (1)求證:平面ACD⊥平面ADE;
          (2)若AB=2,BC=1,tan∠EAB=
          3
          2
          ,求幾何體EDABC的體積V.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,直三棱柱ABC-A1B1C1中,AB=
          2
          ,BC=2,∠BAC=45°,D是AC1的中點,E是側(cè)棱BB1上的一個動點.
          (1)當E是BB1的中點時,證明:DE∥平面A1B1C1;
          (2)在棱BB1上是否存在點E滿足
          BE
          EB1
          ,使二面角E-AC1-C是直二面角?若存在,求出λ的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2009•閔行區(qū)一模)如圖,直三棱柱OAB-O1A1B1中,∠AOB=90°,M是側(cè)棱BB1上一點,向量
          a
          =(1,  1,  -1)
          是平面OA1M的一個法向量,則平面OAB與平面OA1M所成二面角的銳角為
          arccos
          3
          3
          arccos
          3
          3
          (結(jié)果用反三角函數(shù)值表示).

          查看答案和解析>>

          科目:高中數(shù)學 來源:2013年山東省淄博市高考數(shù)學模擬試卷3(理科)(解析版) 題型:解答題

          如圖,直三棱柱ABC-A1B1C1中,AB=,BC=2,∠BAC=45°,D是AC1的中點,E是側(cè)棱BB1上的一個動點.
          (1)當E是BB1的中點時,證明:DE∥平面A1B1C1;
          (2)在棱BB1上是否存在點E滿足,使二面角E-AC1-C是直二面角?若存在,求出λ的值;若不存在,說明理由.

          查看答案和解析>>

          同步練習冊答案