【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(
為參數(shù))曲線C2的參數(shù)方程為
(
,
為參數(shù))在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=
與C1,C2各有一個交點.當(dāng)
=0時,這兩個交點間的距離為2,當(dāng)
=
時,這兩個交點重合.
(1)分別說明C1,C2是什么曲線,并求出a與b的值;
(2)設(shè)當(dāng)=
時,l與C1,C2的交點分別為A1,B1,當(dāng)
=-
時,l與C1,C2的交點為A2,B2,求四邊形A1A2B2B1的面積.
【答案】(1)a=3 b=1
(2)
【解析】(1)C1為圓,C2為橢圓.
當(dāng)=0時,射線l與C1,C2交點的直角坐標(biāo)分別是(1,0),(a,0),因為這兩點間的距離為2,所以a=3.
當(dāng)時,射線l與C1,C2交點的直角坐標(biāo)分別是(0,1),(
0,b),因為這兩點重合,所以b=1.
(2)C1,C2的普通方程分別為,
當(dāng)時,射線l與C1交點A1的橫坐標(biāo)是
,與C2交點B1的橫坐標(biāo)是
;
當(dāng)時,射線l與C1 、C2的兩個交點A2 、B2的分別與A1、B1 關(guān)于x軸對稱,因此,四邊形與A1 A2B2B1 為梯形.
故四邊形與A1 A2B2B1 的面積為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種,
方案一:每滿200元減50元;
方案二:每滿200元可抽獎一次.具體規(guī)則是依次從裝有3個紅球、l個白球的甲箱,裝有2個紅球、2個白球的乙箱,以及裝有1個紅球、3個白球的丙箱中各隨機(jī)摸出1個球,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)
紅球個數(shù) | 3 | 2 | 1 | 0 |
實際付款 | 半價 | 7折 | 8折 | 原價 |
(1)若兩個顧客都選擇方案二,各抽獎一次,求至少一個人獲得半價優(yōu)惠的概率;
(2)若某顧客購物金額為320元,用所學(xué)概率知識比較哪一種方案更劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù),
)以坐標(biāo)原點為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)曲線和
交于
,
兩點,點
,若
,
,
成等比數(shù)列,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)全球化、信息化的發(fā)展,企業(yè)之間的競爭從資源的爭奪轉(zhuǎn)向人才的競爭.吸引、留住培養(yǎng)和用好人才成為人力資源管理的戰(zhàn)略目標(biāo)和緊迫任務(wù).在此背景下,某信息網(wǎng)站在15個城市中對剛畢業(yè)的大學(xué)生的月平均收入薪資和月平均期望薪資做了調(diào)查,數(shù)據(jù)如圖所示.
(1)若某大學(xué)畢業(yè)生從這15座城市中隨機(jī)選擇一座城市就業(yè),求該生選中月平均收人薪資高于8000元的城市的概率;
(2)若從月平均收入薪資與月平均期望薪資之差高于1000元的城市中隨機(jī)選擇2座城市,求這2座城市的月平均期望薪資都高于8000元或都低于8000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐(如圖一)的平面展開圖(如圖二)中,四邊形
為邊長等于
的正方形,
和
均為正三角形,在三棱錐
中:
(I)證明:平面平面
;
(Ⅱ)若點在棱
上運(yùn)動,當(dāng)直線
與平面
所成的角最大時,求二面角
的余弦值.
圖一
圖二
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形中,
,
,
是
的中點,以
為折痕,將
折起,使點
到達(dá)點
的位置,且平面
平面
,如圖2.
(1)求證:;
(2)若為
的中點,求四面體
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,且經(jīng)過點
.
(1)求橢圓C的方程;
(2)設(shè)過點的直線l與橢圓C交于
,
兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在菱形中,
,
為線段
的中點(如圖1).將
沿
折起到
的位置,使得平面
平面
,
為線段
的中點(如圖2).
(Ⅰ)求證:;
(Ⅱ)求證:平面
;
(Ⅲ)當(dāng)四棱錐的體積為
時,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)設(shè).
①若函數(shù)在
處的切線過點
,求
的值;
②當(dāng)時,若函數(shù)
在
上沒有零點,求
的取值范圍;
(2)設(shè)函數(shù),且
(
),求證:當(dāng)
時,
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com