日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,長方體ABCDA1B1C1D1中,ADAA11ABm,點M是棱CD的中點.

          1)求異面直線B1CAC1所成的角的大小;

          2)是否存在實數(shù)m,使得直線AC1與平面BMD1垂直?說明理由;

          3)設(shè)P是線段AC1上的一點(不含端點),滿足λ,求λ的值,使得三棱錐B1CD1C1與三棱錐B1CD1P的體積相等.

          【答案】190° 2)存在,m,理由見解析 3λ

          【解析】

          1)根據(jù)題意只需證明平面,即可得到B1CAC1,從而可得答案.

          2)存在實數(shù)m,使得直線AC1與平面BMD1垂直.只需證明BMAC1AC1D1M,即可得到直線AC1⊥平面BMD1;

          3)計算,設(shè)AC1 與平面B1CD1 的斜足為O,則AO2OC1,PAO的中點,從而可得答案.

          1)連接BC1,如圖所示:

          由四邊形BCC1B1為正方形,可得B1CBC1

          ABCDA1B1C1D1為長方體,可得ABB1C,而ABBC1B,

          B1C⊥平面ABC1,而AC1平面ABC1,∴B1CAC1,

          即異面直線B1CAC1所成的角的大小為90°

          2)存在實數(shù)m,使得直線AC1與平面BMD1垂直.

          事實上,當m時,CM,

          BC1,∴,則RtABCRtBCM,

          則∠CAB=∠MBC,

          ∵∠CAB+ACB90°,∴∠MBC+ACB90°,即ACBM,

          CC1BM,ACCC1C,∴BM⊥平面ACC1,則BMAC1,

          同理可證AC1D1M,

          D1MBMM,∴直線AC1⊥平面BMD1

          3)∵,

          ,

          設(shè)AC1 與面B1CD1 的斜足為O,則AO2OC1,

          ∴在線段AC1上取一點P,要使三棱錐B1CD1C1與三棱錐B1CD1P的體積相等,

          PAO的中點,即

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】平面直角坐標系中,矩形,、、,將矩形折疊,使O點落在線段上,設(shè)折痕所在直線的斜率為k,則k的取值范圍是( 

          A.B.

          C.D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】下列說法中,正確的個數(shù)是( )

          1)在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等.

          2)如果一組數(shù)中每個數(shù)減去同一個非零常數(shù),則這一組數(shù)的平均數(shù)改變,方差不改變.

          3)一個樣本的方差s2=[x32+X—32+ +X32],則這組數(shù)據(jù)總和等于60.

          4)數(shù)據(jù)的方差為,則數(shù)據(jù)的方差為.

          A.4B.3C.2D.1

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)直線與平面相交但不垂直,則下列說法中正確的是( )

          A.在平面內(nèi)沒有直線與直線垂直;

          B.在平面內(nèi)有且只有一條直線與直線垂直;

          C.在平面內(nèi)有無數(shù)條直線與直線垂直;

          D.在平面內(nèi)存在兩條相交直線與直線垂直.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】關(guān)于旋轉(zhuǎn)體的體積,有如下的古爾。guldin)定理:平面上一區(qū)域D繞區(qū)域外一直線(區(qū)域D的每個點在直線的同側(cè),含直線上)旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積,等于D的面積與D的幾何中心(也稱為重心)所經(jīng)過的路程的乘積.利用這一定理,可求得半圓盤,繞直線x旋轉(zhuǎn)一周所形成的空間圖形的體積為_____

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在幾何體中,四邊形是矩形,平面,,,分別是線段的中點.

          (Ⅰ)求證:平面;

          (Ⅱ)求平面與平面所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.

          (1) 證明:PB∥平面AEC

          (2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在四棱錐中,底面為菱形,頂點在底面的射影恰好是菱形對角線的交點,且,,,其中.

          (1)當時,求證:

          (2)當與平面所成角的正弦值為時,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】201810月考考試中,成都外國語學校共有250名高三文科學生參加考試,數(shù)學成績的頻率分布直方圖如圖:

          1)如果成績大于130的為特別優(yōu)秀,這250名學生中本次考試數(shù)學成績特別優(yōu)秀的大約多少人?

          2)如果這次考試語文特別優(yōu)秀的有5人,語文和數(shù)學兩科都特別優(yōu)秀的共有2人,從(1)中的數(shù)學成績特別優(yōu)秀的人中隨機抽取2人,求選出的2人中恰有1名兩科都特別優(yōu)秀的概率.

          3)根據(jù)(1),(2)的數(shù)據(jù),是否有99%以上的把握認為語文特別優(yōu)秀的同學,數(shù)學也特別優(yōu)秀?

          P

          0.50

          0.40

          0.010

          0.005

          0.001

          k0

          0.455

          0.708

          6.635

          7.879

          10.828

          查看答案和解析>>

          同步練習冊答案