日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2007•浦東新區(qū)二模)兩個(gè)相同的正四棱錐底面重合組成一個(gè)八面體,可放于棱長為1的正方體中,重合的底面與正方體的某一個(gè)面平行,各頂點(diǎn)均在正方體的表面上,把滿足上述條件的八面體稱為正方體的“正子體”.
          (1)若正子體的六個(gè)頂點(diǎn)分別是正方體各面的中心,求此正子體的體積;
          (2)在(1)的條件下,求異面直線DE與CF所成的角.
          分析:(1)因?yàn)檎芋w的各個(gè)頂點(diǎn)是正方體各面的中心,可得AB的值,可得正四棱錐E-ABCD的底面積S=|AB|2=
          1
          2
          ,且高h=
          1
          2
          ,從而求得正子體體積.
          (2)記正方體為MNGH-M1N1G1H1,記棱MN中點(diǎn)為P,MM1中點(diǎn)為Q,則PQ∥FC,DM1∥PQ,所以DM1∥FC,故異面直線DE與CF所成的角即為∠M1DE.解三角形求得∠M1DE的值.
          解答:解:(1)因?yàn)檎芋w的各個(gè)頂點(diǎn)是正方體各面的中心,
          所以|AB|=
          (
          1
          2
          )
          2
          +(
          1
          2
          )
          2
          =
          2
          2
          .-------(2分)
          故正四棱錐E-ABCD的底面積S=|AB|2=
          1
          2
          ,且高h=
          1
          2
          ,------(5分)
          故正子體體積V=
          1
          3
          Sh×2=
          1
          3
          ×
          1
          2
          ×
          1
          2
          ×2=
          1
          6
          .---------(7分)
          (2)記正方體為MNGH-M1N1G1H1,
          記棱MN中點(diǎn)為P,MM1中點(diǎn)為Q.-------(8分)
          則PQ∥FC,DM1∥PQ,所以DM1∥FC.--------(10分)
          異面直線DE與CF所成的角即為∠M1DE.----------(11分)
          又因?yàn)?span id="cankcnb" class="MathJye">DE=DM1=EM1=
          2
          2
          ,故∠M1DE=60°,--------(14分)
          異面直線DE與CF所成的角為60°.
          點(diǎn)評(píng):本題主要考查求棱錐的體積,異面直線所成的角的定義和求法,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•浦東新區(qū)二模)據(jù)預(yù)測(cè),某旅游景區(qū)游客人數(shù)在500至1300人之間,游客人數(shù)x(人)與游客的消費(fèi)總額y(元)之間近似地滿足關(guān)系:y=-x2+2400x-1000000.
          (Ⅰ)若該景區(qū)游客消費(fèi)總額不低于400000元時(shí),求景區(qū)游客人數(shù)的范圍.
          (Ⅱ)當(dāng)景區(qū)游客的人數(shù)為多少人時(shí),游客的人均消費(fèi)最高?并求游客的人均最高消費(fèi)額.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•浦東新區(qū)一模)若α∈{-1,-3,
          1
          3
          ,2}
          ,則使函數(shù)y=xα的定義域?yàn)镽且在(-∞,0)上單調(diào)遞增的α值為
          1
          3
          1
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•浦東新區(qū)二模)記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對(duì)任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素.
          (1)判斷函數(shù)f(x)=-x+1,g(x)=2x-1是否是M的元素;
          (2)設(shè)函數(shù)f(x)=log2(1-2x),求f(x)的反函數(shù)f-1(x),并判斷f(x)是否是M的元素;
          (3)f(x)=
          axx+b
          ∈M(a<0),求使f(x)<1成立的x的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•浦東新區(qū)二模)x∈R,“x<2”是“|x-1|<1”的(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•浦東新區(qū)二模)據(jù)有關(guān)資料統(tǒng)計(jì),通過環(huán)境整治,某湖泊污染區(qū)域S(km2)與時(shí)間t(年)可近似看作指數(shù)函數(shù)關(guān)系,已知近兩年污染區(qū)域由0.16km2降至0.04km2,則污染區(qū)域降至0.01km2還需
          2
          2
          年.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案