日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓,拋物線的焦點(diǎn)均在軸上, 的中心和的頂點(diǎn)均為原點(diǎn),從, 上分別取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:

          3

          -2

          4

          0

          -4

          (1)求的標(biāo)準(zhǔn)方程;

          (2)若直線與橢圓交于不同的兩點(diǎn),且線段的垂直平分線過(guò)定點(diǎn),求實(shí)數(shù)的取值范圍.

          【答案】(1) .;(2) .

          【解析】試題分析:1先分析出點(diǎn), 在拋物線上,點(diǎn) 在橢圓上,利用待定系數(shù)法可得到的標(biāo)準(zhǔn)方程;(2設(shè), ,將代入橢圓方程,消去利用韋達(dá)定理以及中點(diǎn)坐標(biāo)公式可得線段的垂直平分線的方程為,由點(diǎn)在直線上,得,結(jié)合判別式大于零可得實(shí)數(shù)的取值范圍.

          試題解析:(1)設(shè)拋物線,則有,據(jù)此驗(yàn)證4個(gè)點(diǎn)知, 在拋物線上,易求.

          設(shè),把點(diǎn), 代入得:

          ,解得,所以的方程為.

          (2)設(shè) ,將代入橢圓方程,消去,

          所以,即.①

          由根與系數(shù)關(guān)系得,則

          所以線段的中點(diǎn)的坐標(biāo)為.

          又線段的垂直平分線的方程為,

          由點(diǎn)在直線上,得

          ,所以

          由①得,所以,即,

          所以實(shí)數(shù)的取值范圍是.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          (1)若函數(shù)的最小值是,且c1,,求F(2)F(2)的值;

          (2)a1c0,且在區(qū)間(01]上恒成立,試求b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】甲、乙兩人在相同條件下各射靶10次,每次射靶的成績(jī)情況如圖所示:

          (Ⅰ)請(qǐng)?zhí)顚?xiě)下表(寫(xiě)出計(jì)算過(guò)程):

          (Ⅱ)從下列三個(gè)不同的角度對(duì)這次測(cè)試結(jié)果進(jìn)行分析;

          ①?gòu)钠骄鶖?shù)和方差相結(jié)合看(分析誰(shuí)的成績(jī)更穩(wěn)定);

          ②從平均數(shù)和命中9環(huán)及9環(huán)以上的次數(shù)相結(jié)合看(分析誰(shuí)的成績(jī)好些);

          ③從折線圖上兩人射擊命中環(huán)數(shù)的走勢(shì)看(分析誰(shuí)更有潛力)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)的定義域?yàn)?/span>,且對(duì)任意的. 當(dāng)時(shí),.

          (1)求并證明的奇偶性;

          (2)判斷的單調(diào)性并證明;

          (3);若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,是一個(gè)半圓柱與多面體構(gòu)成的幾何體,平面與半圓柱的下底面共面,且, 為弧上(不與重合)的動(dòng)點(diǎn).

          (1)證明: 平面;

          (2)若四邊形為正方形,且, ,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】執(zhí)行如圖所示的程序框圖,若輸出的值為11,則判斷框中的條件可以是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,從一個(gè)面積為的半圓形鐵皮上截取兩個(gè)高度均為的矩形,并將截得的兩塊矩形鐵皮分別以,為母線卷成兩個(gè)高均為的圓柱(無(wú)底面,連接部分材料損失忽略不計(jì)).記這兩個(gè)圓柱的體積之和為

          (1)將表示成的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;

          (2)求兩個(gè)圓柱體積之和的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,正方形中, , 交于點(diǎn),現(xiàn)將沿折起得到三棱錐, , 分別是, 的中點(diǎn).

          (1)求證: ;

          (2)若三棱錐的最大體積為,當(dāng)三棱錐的體積為,且為銳角時(shí),求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】12分)已知函數(shù)fx=

          1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

          2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案