日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 12分)某城市有一塊不規(guī)則的綠地如圖所示,城建部門欲在該地上建造一個底座為三角形的環(huán)境標志,小李、小王設計的底座形狀分別為△ABC、△ABD,經(jīng)測量AD=BD=14,BC=10,AC=16,∠C=∠D.

          (I)求AB的長度;
          (Ⅱ)若建造環(huán)境標志的費用與用地面積成正比,不考慮其他因素,小李、小王誰的設計使建造費用最低,請說明理由.

          (Ⅰ)A、B兩點的距離為14.(Ⅱ)

          解析試題分析:(Ⅰ)在△ABC中,由余弦定理得cosC 的值,在△ABD中,由余弦定理得cosD 的值,由∠C=∠D得 cosC=cosD,求得AB=7,從而得出結論.
          (Ⅱ)小李的設計符合要求,因為由條件可得 S△ABD>S△ABC,再由AD=BD=AB=7,得△ABD是等邊三角形.由此求得S△ABC的值,再乘以5000,即得所求.
          解:(Ⅰ)在中,由余弦定理得
            ①
          中,由余弦定理及整理得
              ②………4分
          由①②得:
          整理可得 ,……………6分
          為三角形的內角,所以,
          ,,所以是等邊三角形,
          ,即A、B兩點的距離為14.……………8分
          (Ⅱ)小李設計符合要求.理由如下:


          因為…………12分
          所以
          考點:本試題主要考查了余弦定理的應用,考查三角形面積的計算,考查利用數(shù)學知識解決實際問題的能力,屬于中檔題
          點評:解決該試題的關鍵是能靈活運用余弦定理得到cosD的值。

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:解答題

          某興趣小組測量電視塔AE的高度H(單位:m),如示意圖,垂直放置的標桿BC的高度h=4m,仰角∠ABE=,∠ADE=。

          (1) 該小組已經(jīng)測得一組、的值,tan=1.24,tan=1.20,請據(jù)此算出H的值;
          (2) 該小組分析若干測得的數(shù)據(jù)后,認為適當調整標桿到電視塔的距離d(單位:m),使之差較大,可以提高測量精確度。若電視塔的實際高度為125m,試問d為多少時,最大?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (本題滿分12分)在△ABC中,若
          (1)求的值;
          (2)若,求。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (本題滿分14分)在中,的對邊分別為成等差數(shù)列.(1)求的值;(2)求的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (本題滿分12分)在中,內角對邊的邊長分別是,已知,
          ,,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (本小題滿分12分) 在△中,角A、B、C所對的邊分別是 ,且="2,"  .
          (Ⅰ)b="3," 求的值.
          (Ⅱ)若△的面積=3,求b,c的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (本題滿分12分)
          在△中,角的對邊分別為,已知,且,
          求: (1)         (2)△的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          中,.
          (1)求的值; (2)若,求的值。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (本題分12分)
          中,角的對邊分別為,,
          (Ⅰ)求的值;(Ⅱ)若,求的值.

          查看答案和解析>>

          同步練習冊答案