【題目】已知為橢圓
上的動(dòng)點(diǎn),過(guò)點(diǎn)
作
軸的垂線(xiàn)段
,
為垂足,點(diǎn)
滿(mǎn)足
.
(Ⅰ)求動(dòng)點(diǎn)的軌跡
的方程;
(Ⅱ)若兩點(diǎn)分別為橢圓
的左右頂點(diǎn),
為橢圓
的左焦點(diǎn),直線(xiàn)
與橢圓
交于點(diǎn)
,直線(xiàn)
的斜率分別為
,求
的取值范圍.
【答案】(Ⅰ)動(dòng)點(diǎn)的軌跡
的方程為
(Ⅱ)
【解析】【試題分析】(1)先設(shè),進(jìn)而求得點(diǎn)
,再依據(jù)題設(shè)條件
求得
,然后借助
為橢圓
上的點(diǎn),進(jìn)而消去參數(shù)從而求得動(dòng)點(diǎn)
的軌跡
的方程為
;(2)先求出點(diǎn)
,再設(shè)
,進(jìn)而依據(jù)
求出
,進(jìn)而借助
且
,及
在
和
都是單調(diào)減函數(shù),求出
的范圍為
:
解:(Ⅰ)設(shè)依題意
,且
,
∵,即
,
則有.
又∵為橢圓
上的點(diǎn),
可得,即
,
即動(dòng)點(diǎn)的軌跡
的方程為
.
(Ⅱ)依題意,設(shè)
∵為圓
的直徑,則有
,故
的斜率滿(mǎn)足
,
,
∵點(diǎn)不同于
兩點(diǎn)且直線(xiàn)
的斜率存在,故
且
,
在
和
都是單調(diào)減函數(shù),
的范圍為
,
故
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在底面為矩形的四棱錐中,
.
(1)證明:平面平面
;
(2)若異面直線(xiàn)與
所成角為
,
,
,求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某創(chuàng)業(yè)團(tuán)隊(duì)擬生產(chǎn)兩種產(chǎn)品,根據(jù)市場(chǎng)預(yù)測(cè),
產(chǎn)品的利潤(rùn)與投資額成正比(如圖1),
產(chǎn)品的利潤(rùn)與投資額的算術(shù)平方根成正比(如圖2).(注: 利潤(rùn)與投資額的單位均為萬(wàn)元)
(1)分別將兩種產(chǎn)品的利潤(rùn)
、
表示為投資額
的函數(shù);
(2)該團(tuán)隊(duì)已籌集到10 萬(wàn)元資金,并打算全部投入兩種產(chǎn)品的生產(chǎn),問(wèn):當(dāng)
產(chǎn)品的投資額為多少萬(wàn)元時(shí),生產(chǎn)
兩種產(chǎn)品能獲得最大利潤(rùn),最大利潤(rùn)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一(1)班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見(jiàn)部分如下圖:
求分?jǐn)?shù)在
的頻率及全班人數(shù);
求分?jǐn)?shù)在
之間的頻數(shù),并計(jì)算頻率分布直方圖中
間矩形的高;
若要從分?jǐn)?shù)在
之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在
之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)﹣ x.
(1)試判斷函數(shù)f(x)的奇偶性并證明;
(2)設(shè)g(x)=log4(a2x﹣ a),若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|mx|﹣|x﹣n|(0<n<1+m),若關(guān)于x的不等式f(x)<0的解集中的整數(shù)恰有3個(gè),則實(shí)數(shù)m的取值范圍為( )
A.3<m<6
B.1<m<3
C.0<m<1
D.﹣1<m<0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)“2015年國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)” 中公布的數(shù)據(jù),從2011 年到2015 年,我國(guó)的
第三產(chǎn)業(yè)在中的比重如下:
年份 | |||||
年份代碼 | |||||
第三產(chǎn)業(yè)比重 |
(1)在所給坐標(biāo)系中作出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(2)建立第三產(chǎn)業(yè)在中的比重
關(guān)于年份代碼
的回歸方程;
(3)按照當(dāng)前的變化趨勢(shì),預(yù)測(cè)2017 年我國(guó)第三產(chǎn)業(yè)在中的比重.
附注: 回歸直線(xiàn)方程中的斜率和截距的最小二乘估計(jì)公式分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列各組中兩個(gè)函數(shù)是否為同一函數(shù).
(1)f(x)=x2+2x﹣1,g(x)=t2+2t﹣1;
(2)f(x)= , g(x)=x+1;
(3)f(x)= , g(x)=
;
(4)f(x)=|3﹣x|+1,g(x)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某海濱游樂(lè)場(chǎng)出租快艇的收費(fèi)辦法如下:不超過(guò)十分鐘收費(fèi)80元;超過(guò)十分鐘,超過(guò)部分按每分鐘10元收費(fèi)(對(duì)于其中不足一分鐘的部分,若小于0.5分鐘則不收費(fèi),若大于或等于0.5分鐘則按一分鐘收費(fèi)),小茗同學(xué)為該游樂(lè)場(chǎng)設(shè)計(jì)了一款收費(fèi)軟件,程序框圖如圖所示,其中x(分鐘)為航行時(shí)間,y(元)為所收費(fèi)用,用[x]表示不大于x的最大整數(shù),則圖中①處應(yīng)填( )
A.y=10[x]
B.y=10[x]﹣20
C.y=10[x﹣ ]﹣20
D.y=10[x+ ]﹣20
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com