日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列滿足:當n為奇數(shù)時,當n為偶數(shù)時,則數(shù)列的前2m項的和(m是正整數(shù))為                 


          解析:

          解:因為

          所以是公差為10的等差數(shù)列

          因為所以是公比為2的等比數(shù)列

          從而數(shù)列的前2m項和為:

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知數(shù)列{an}的首項為1,前n項和為Sn,且滿足an+1=3Sn,n∈N*.數(shù)列{bn}滿足bn=log4an
          (I)求數(shù)列{an}的通項公式;
          (II)當n≥2時,試比較b1+b2+…+bn
          12
          (n-1)2
          的大小,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知數(shù)列{an}的前n項和為Sn且滿足3Sn-4an=2n-4,n∈N*
          (1)證明:當n≥2時,an=4an-1-2;
          (2)求數(shù)列{an}的通項公式;
          (3)設(shè)cn=
          an
          an+1
          Tn為數(shù)列{cn}的前n項和,證明:Tn
          2n+1
          8

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知數(shù)列{an}的前n項和為Sn,點(n,Sn)在函數(shù)f(x)=2x-1的圖象上,數(shù)列{bn}滿足bn=log2an-12(n∈N*).
          (1)求數(shù)列{an}的通項公式;
          (2)設(shè)數(shù)列{bn}的前n項和為Tn,當Tn最小時,求n的值;
          (3)求不等式Tn<bn的解集.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011-2012學年上海市崇明縣高三高考模擬考試二模理科數(shù)學試卷(解析版) 題型:解答題

          已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.數(shù)列滿足,,為數(shù)列的前n項和.

          (1)求數(shù)列的通項公式和數(shù)列的前n項和;

          (2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

          (3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

          【解析】第一問利用在中,令n=1,n=2,

             即      

          解得,, [

          時,滿足,

          ,

          第二問,①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

           ,等號在n=2時取得.

          此時 需滿足.  

          ②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

           是隨n的增大而增大, n=1時取得最小值-6.

          此時 需滿足

          第三問

               若成等比數(shù)列,則,

          即.

          ,可得,即,

                  .

          (1)(法一)在中,令n=1,n=2,

             即      

          解得,, [

          時,滿足,

          ,

          (2)①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

           ,等號在n=2時取得.

          此時 需滿足.  

          ②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

           是隨n的增大而增大, n=1時取得最小值-6.

          此時 需滿足

          綜合①、②可得的取值范圍是

          (3),

               若成等比數(shù)列,則

          即.

          ,可得,即,

          ,且m>1,所以m=2,此時n=12.

          因此,當且僅當m=2, n=12時,數(shù)列中的成等比數(shù)列

           

          查看答案和解析>>

          同步練習冊答案