【題目】甲乙兩名運(yùn)動(dòng)員互不影響地進(jìn)行四次設(shè)計(jì)訓(xùn)練,根據(jù)以往的數(shù)據(jù)統(tǒng)計(jì),他們?cè)O(shè)計(jì)成績(jī)均不低于8環(huán)(成績(jī)環(huán)數(shù)以整數(shù)計(jì)),且甲乙射擊成績(jī)(環(huán)數(shù))的分布列如下:
(I)求,
的值;
(II)若甲乙兩射手各射擊兩次,求四次射擊中恰有三次命中9環(huán)的概率;
(III)若兩個(gè)射手各射擊1次,記兩人所得環(huán)數(shù)的差的絕對(duì)值為,求
的分布列和數(shù)學(xué)期望.
【答案】(1) ,
(2)
(3)見解析
【解析】試題分析:(1)由題意,根據(jù)分布列的性質(zhì),即可求得;
(II)記事件:甲命中
次
環(huán),乙命中
次
環(huán),事件
:甲命中
次
環(huán),乙命中
次
環(huán),則四次設(shè)計(jì)中恰有三次命中
環(huán)為事件
,利用概率的加法公式,即可求解相應(yīng)的概率;
(III)由題意,得出隨機(jī)的取值,求得取每個(gè)值的概率,即可得到分布列,利用期望的公式,即可求解數(shù)學(xué)期望.
試題解析:
(1)由題意易得,
.
(II)記事件:甲命中1次9環(huán),乙命中2次9環(huán),事件
:甲命中2次9環(huán),乙命中1次9環(huán),則四次設(shè)計(jì)中恰有三次命中9環(huán)為事件
∴
(III)的取值分別為0,1,2,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,正確的為________(正確序號(hào)全部填上)
(1)空間中,一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,則這兩個(gè)角相等或互補(bǔ);
(2)一個(gè)二面角的兩個(gè)半平面與另一個(gè)二面角的兩個(gè)半平面分別垂直,則這兩個(gè)二面角相等或互補(bǔ);
(3)直線,
為異面直線,所成角的大小為
,過空間一點(diǎn)
作直線
,使l與直線
及直線
都成相等的角
,這樣的直線可作3條;
(4)直線與平面
相交,過直線
可作唯一的平面與平面
垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年,在《我是演說(shuō)家》第四季這檔節(jié)目中,英國(guó)華威大學(xué)留學(xué)生游斯彬的“數(shù)學(xué)之美”的演講視頻在微信朋友圈不斷被轉(zhuǎn)發(fā),他的視角獨(dú)特,語(yǔ)言幽默,給觀眾留下了深刻的印象.某機(jī)構(gòu)為了了解觀眾對(duì)該演講的喜愛程度,隨機(jī)調(diào)查了觀看了該演講的140名觀眾,得到如下的列聯(lián)表:(單位:名)
男 | 女 | 總計(jì) | |
喜愛 | 40 | 60 | 100 |
不喜愛 | 20 | 20 | 40 |
總計(jì) | 60 | 80 | 140 |
(1)根據(jù)以上列聯(lián)表,問能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為觀眾性別與喜愛該演講有關(guān).(精確到0.001)
(2)從這60名男觀眾中按對(duì)該演講是否喜愛采取分層抽樣,抽取一個(gè)容量為6的樣本,然后隨機(jī)選取兩名作跟蹤調(diào)查,求選到的兩名觀眾都喜愛該演講的概率.
附:臨界值表
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.705 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為1,線段
上有兩個(gè)動(dòng)點(diǎn)
,且
,現(xiàn)有如下四個(gè)結(jié)論:
;
平面
;
三棱錐
的體積為定值;
異面直線
所成的角為定值,
其中正確結(jié)論的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,四邊形
為平行四邊形,
,
,
,
為
的中點(diǎn).
(1)求證: 平面
;
(2)求點(diǎn)到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響,對(duì)近8年的宣傳費(fèi)和年銷售量
數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中=
,
=
(Ⅰ)根據(jù)散點(diǎn)圖判斷,與
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(III)已知這種產(chǎn)品的年利潤(rùn)z與x,y的關(guān)系為,根據(jù)(Ⅱ)的結(jié)果回答下列問題:
(Ⅰ)當(dāng)年宣傳費(fèi)時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值時(shí)多少?
(Ⅱ)當(dāng)年宣傳費(fèi)為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù),
,……,
,其回歸線
的斜率和截距的最小二乘估計(jì)分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足:
(1) 證明:數(shù)列是等比數(shù)列;
(2) 求使不等式成立的所有正整數(shù)m、n的值;
(3) 如果常數(shù)0 < t < 3,對(duì)于任意的正整數(shù)k,都有成立,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解A,B兩班學(xué)生手機(jī)上網(wǎng)的時(shí)長(zhǎng),分別從這兩個(gè)班中隨機(jī)抽取5名同學(xué)進(jìn)行調(diào)查,將他們平均每周手機(jī)上網(wǎng)的時(shí)長(zhǎng)作為樣本,繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個(gè)位數(shù)字).
(1) 試估計(jì)哪個(gè)班級(jí)學(xué)生平均上網(wǎng)的時(shí)間較長(zhǎng)。
(2)從A班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過19的數(shù)據(jù)記為a,從B班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過21的數(shù)據(jù)記為b,求a>b的概率.
查看答案和解析>>