【題目】已知圓C: ,直線l:
(Ⅰ)求直線l所過定點(diǎn)A的坐標(biāo);
(Ⅱ)求直線l被圓C所截得的弦長最短時(shí)m的值及最短弦長;
(Ⅲ)已知點(diǎn),在直線MC上(C為圓心),存在定點(diǎn)N(異于點(diǎn)M),滿足:對于圓C上任一點(diǎn)P,都有
為一常數(shù),試求所有滿足條件的點(diǎn)N的坐標(biāo)及該常數(shù)。
【答案】(1)直線過定點(diǎn)
(2)
(3)
【解析】試題分析:(1)將直線中m合并到一起,然后令系數(shù)及剩余都為0即可得定點(diǎn)(2)直線l被圓C所截得的弦長最短時(shí)即當(dāng)時(shí)(3)由題知,直線
的方程為
,假設(shè)存在定點(diǎn)
滿足題意,則設(shè)
,
,得
,且
再根據(jù)圓系方程可得對任意
恒成立,
且
即可求出結(jié)論
試題解析:
解:(Ⅰ)依題意得,
令且
,得
直線
過定點(diǎn)
(Ⅱ)當(dāng)時(shí),所截得弦長最短,由題知
,
,得
,
由
得
圓心到直線的距離為
最短弦長為
(Ⅲ)法一:由題知,直線的方程為
,假設(shè)存在定點(diǎn)
滿足題意,
則設(shè),
,得
,且
整理得,
上式對任意
恒成立,
且
解得 或
(舍去,與
重合)
綜上可知,在直線上存在定點(diǎn)
,使得
為常數(shù)
法二:設(shè)直線上的點(diǎn)
取直線與圓
的交點(diǎn)
,則
取直線與圓
的交點(diǎn)
,則
令,解得
或
(舍去,與
重合),此時(shí)
若存在這樣的定點(diǎn)滿足題意,則必為
,
下證:點(diǎn)滿足題意,
設(shè)圓上任意一點(diǎn),則
綜上可知,在直線上存在定點(diǎn)
,使得
為常數(shù)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知c>0,設(shè)命題p:函數(shù)為減函數(shù).命題q:當(dāng)
時(shí),函數(shù)f(x)=x+
>
恒成立.如果“p∨q”為真命題,“p∧q”為假命題,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下說法正確的是( )
A.零向量沒有方向
B.單位向量都相等
C.共線向量又叫平行向量
D.任何向量的模都是正實(shí)數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場預(yù)計(jì)全年分批購入每臺2000元的電視機(jī)共3600臺.每批都購入臺(
是自然數(shù))且每批均需付運(yùn)費(fèi)400元.貯存購入的電視機(jī)全年所需付的保管費(fèi) 與每批購入電視機(jī)的總價(jià)值(不含運(yùn)費(fèi))成正比.若每批購入400臺,則全年需用去運(yùn)輸和保管總費(fèi)用43600元.現(xiàn)在全年只有24000元資金可以支付這筆費(fèi)用,請問,能否恰當(dāng)安排每批進(jìn)貨數(shù)量,使資金夠用?寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)
的極值和單調(diào)區(qū)間;
(2)若在區(qū)間上至少存在一點(diǎn)
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,點(diǎn)
到兩點(diǎn)
的距離之和等于4,設(shè)點(diǎn)
的軌跡為
(1)求曲線的方程;
(2)設(shè)、
、
是曲線
上的三點(diǎn).若
,求線段
的中點(diǎn)
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為方便市民休閑觀光,市政府計(jì)劃在半徑為200,圓心角為
的扇形廣場內(nèi)(如圖所示),沿△
邊界修建觀光道路,其中
、
分別在線段
、
上,且
、
兩點(diǎn)間距離為定長
.
(1)當(dāng)時(shí),求觀光道
段的長度;
(2)為提高觀光效果,應(yīng)盡量增加觀光道路總長度,試確定圖中、
兩點(diǎn)的位置,使觀光道路總長度達(dá)到最長?并求出總長度的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: +
=1(a>b>0)的離心率為
,橢圓C的長軸長為4.
(1)求橢圓C的方程;
(2)已知直線l:y=kx+與橢圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)k使得以線段AB為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:x+2y﹣1=0,l2:2x+ny+5=0,l3:mx+3y+1=0,若l1∥l2且l1⊥l3,則m+n的值為( )
A.﹣10B.﹣2C.2D.10
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com