日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為,,的中點(diǎn),O1,O1′,O2,O2′分別為CD,C′D′,DE,D′E′的中點(diǎn)。
          (1)證明:O1′,A′,O2,B四點(diǎn)共面;
          (2)設(shè)G為AA′中點(diǎn),延長A′O1′到H′,使得O1′H′=A′O1′,證明:BO2′⊥平面H′B′G。
          解:(1)A,分別為中點(diǎn)

          連接
          ∵直線是由直線平移得到


          共面;
          (2)將延長至H使得
          連接,,
          ∴由平移性質(zhì)得

          ,,

          ,




          。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為
          CD
          ,
          C′D′
          DE
          ,
          D′E′
          的中點(diǎn),O1,O1′,O2,O2′分別為CD,C′D′,DE,D′E′的中點(diǎn).
          (1)證明:O1′,A′,O2,B四點(diǎn)共面;
          (2)設(shè)G為A A′中點(diǎn),延長A′O1′到H′,使得O1′H′=A′O1′.證明:BO2′⊥平面H′B′G精英家教網(wǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為數(shù)學(xué)公式的中點(diǎn),O1,O1′,O2,O2′分別為CD,C′D′,DE,D′E′的中點(diǎn).
          (1)證明:O1′,A′,O2,B四點(diǎn)共面;
          (2)設(shè)G為A A′中點(diǎn),延長A′O1′到H′,使得O1′H′=A′O1′.證明:BO2′⊥平面H′B′G

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省揭陽市揭東縣云路中學(xué)高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為的中點(diǎn),O1,O1′,O2,O2′分別為CD,C′D′,DE,D′E′的中點(diǎn).
          (1)證明:O1′,A′,O2,B四點(diǎn)共面;
          (2)設(shè)G為A A′中點(diǎn),延長A′O1′到H′,使得O1′H′=A′O1′.證明:BO2′⊥平面H′B′G

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省揭陽市揭東縣云路中學(xué)高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為的中點(diǎn),O1,O1′,O2,O2′分別為CD,C′D′,DE,D′E′的中點(diǎn).
          (1)證明:O1′,A′,O2,B四點(diǎn)共面;
          (2)設(shè)G為A A′中點(diǎn),延長A′O1′到H′,使得O1′H′=A′O1′.證明:BO2′⊥平面H′B′G

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年廣東省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為的中點(diǎn),O1,O1′,O2,O2′分別為CD,C′D′,DE,D′E′的中點(diǎn).
          (1)證明:O1′,A′,O2,B四點(diǎn)共面;
          (2)設(shè)G為A A′中點(diǎn),延長A′O1′到H′,使得O1′H′=A′O1′.證明:BO2′⊥平面H′B′G

          查看答案和解析>>

          同步練習(xí)冊答案