日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,⊙O1與⊙O2相交于A,B兩點(diǎn),過(guò)點(diǎn)A作⊙O1的切線交⊙O2于點(diǎn)C,過(guò)點(diǎn)B作兩圓的割線,分別交⊙O1,⊙O2于點(diǎn)D,E,DE與AC相交于點(diǎn)P.
          (Ⅰ)求證:AD∥EC;
          (Ⅱ)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長(zhǎng)。
          (Ⅰ)證明:連接AB,
          ∵AC是圓O1的切線,
          ∴∠BAC=∠D,
          又∵∠BAC=∠E,
          ∴∠D=∠E,∴AD∥EC。
          (Ⅱ)解法一:∵PA是圓O1的切線,PD是圓O1割線,
          ∴PA2=PB·PD,∴62=PB·(PB+9),
          ∴PB=3,
          又圓O2中由相交弦定理,得PA·PC=BP·PE,∴PE=4, 
          ∵AD是圓O2的切線,DE是圓O2的割線,
          ∴AD2=DB·DE=9×16,
          ∴AD= 12。
          解法二:設(shè)BP=x,PE=y,
          ∵PA=6,PC=2,
          ∴由相交弦定理得PA·PC=BP·PE,xy=12,①
          ∵AD∥EC,
          ,∴,②
          由①②可得(舍去),
          ∴DE=9+x+y=16,
          ∵AD是圓O2的切線,DE是圓O2的割線,
          ∴AD2=DB·DE=9×16,
          ∴AD=12。
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖所示,已知D為△ABC的BC邊上一點(diǎn),⊙O1經(jīng)過(guò)點(diǎn)B,D,交AB于另一點(diǎn)E,⊙O2經(jīng)過(guò)點(diǎn)C,D,交
          AC于另一點(diǎn)F,⊙O1與⊙O2交于點(diǎn)G.
          (1)求證:∠EAG=∠EFG;
          (2)若⊙O2的半徑為5,圓心O2到直線AC的距離為3,AC=10,AG切⊙O2于G,求線段AG的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          14、如圖所示,已知⊙O1與⊙O2相交于A、B兩點(diǎn),過(guò)點(diǎn)A作⊙O1的切線交⊙O2于點(diǎn)C,過(guò)點(diǎn)B作兩圓的割線,分別交⊙O1、⊙O2于點(diǎn)D、E,DE與AC相交于點(diǎn)P.
          (I)求證:AD∥EC;
          (II)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖所示,AF、DE分別是⊙O、⊙O1的直徑,AD與兩圓所在的平面均垂直,AD=8.BC是⊙O的直徑,AB=AC=6,OE∥AD.
          (Ⅰ)求二面角B-AD-F的大。
          (Ⅱ)求直線BD與EF所成的角.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知正三棱柱ABC-A1B1C1,底面邊長(zhǎng)AB=2,AB1⊥BC1,點(diǎn)O、O1分別是邊AC,A1C1的中點(diǎn),建立如圖所示的空間直角坐標(biāo)系.
          (1)求正三棱柱的側(cè)棱長(zhǎng);
          (2)若M為BC1的中點(diǎn),試用基向量
          AA1
          AB
          、
          AC
          表示向量
          AM
          ;
          (3)求異面直線AM與BC所成角.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案