日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知正方形ABCD的中心在原點(diǎn),四個(gè)頂點(diǎn)都在函數(shù)f(x)=ax3+bx(a>0)圖象上.
          (1)若正方形的一個(gè)頂點(diǎn)為(2,1),求a,b的值,并求出此時(shí)函數(shù)的單調(diào)增區(qū)間;
          (2)若正方形ABCD唯一確定,試求出b的值.
          【答案】分析:(1)先依據(jù)待定系數(shù)法求a,b的值,得函數(shù)的解析式,再求導(dǎo)數(shù)fˊ(x),在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0,求出單調(diào)區(qū)間.
          (2)設(shè)正方形ABCD對(duì)角線AC所在的直線方程為y=kx,則其斜率唯一確定,轉(zhuǎn)化為二元方程只有唯一實(shí)數(shù)根,利用根的判別式求解即可.
          解答:解:(1)因?yàn)橐粋(gè)頂點(diǎn)為(2,1),
          所以必有另三個(gè)頂點(diǎn)(-2,-1),(1,-2),(-1,2),
          將(2,1),(1,-2)代入y=ax3+bx,得,.(4分)
          所以
          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183459017823485/SYS201310241834590178234018_DA/3.png">,令f′(x)>0,得
          所以函數(shù)f(x)單調(diào)增區(qū)間為.(6分)
          (2)設(shè)正方形ABCD對(duì)角線AC所在的直線方程為y=kx(k≠0),
          則對(duì)角線BD所在的直線方程為
          解得,
          所以,
          同理,,
          又因?yàn)锳O2=BO2,所以.(10分)
          ,即
          得t2-bt+2=0
          因?yàn)檎叫蜛BCD唯一確定,則對(duì)角線AC與BD唯一確定,于是值唯一確定,
          所以關(guān)于t的方程t2-bt+2=0有且只有一個(gè)實(shí)數(shù)根,又
          所以△=b2-8=0,即.(14分)
          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183459017823485/SYS201310241834590178234018_DA/20.png">,a>0,所以b<k;又,所以,故b<0.
          因此;
          反過來時(shí),,
          于是,;或,
          于是正方形ABCD唯一確定.(16分)
          點(diǎn)評(píng):本小題主要考查函數(shù)的解析式的求法以及導(dǎo)數(shù),單調(diào)性,不等式等基礎(chǔ)知識(shí),考查綜合利用數(shù)學(xué)知識(shí)分析問題、解決問題的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知正方形ABCD的邊長(zhǎng)為2,中心為O,四邊形PACE是直角梯形,設(shè)PA⊥平面ABCD,且PA=2,CE=1,
          (1)求證:面PAD∥面BCE.
          (2)求PO與平面PAD所成角的正弦.
          (3)求二面角P-EB-C的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知正方形ABCD的中心為E(-1,0),一邊AB所在的直線方程為x+3y-5=0,求其它三邊所在的直線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知正方形ABCD的邊長(zhǎng)是4,對(duì)角線AC與BD交于O,將正方形ABCD沿對(duì)角線BD折成60°的二面角,并給出下面結(jié)論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=
          3
          4
          ,則其中的真命題是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知正方形ABCD的邊長(zhǎng)為1,設(shè)
          AB
          =
          a
          ,
          BC
          =
          b
          ,
          AC
          =
          c
          ,則|
          a
          -
          b
          +
          c
          |等于(  )
          A、0
          B、
          2
          C、2
          D、2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知正方形ABCD的邊長(zhǎng)為
          2
          ,
          AB
          =
          a
          ,
          BC
          =
          b
          ,
          AC
          =
          c
          ,則|
          a
          +
          b
          +
          c
          |
          =
          4
          4

          查看答案和解析>>

          同步練習(xí)冊(cè)答案