【題目】已知橢圓的左、右頂點分別為
,
,上下頂點分別為
,
,左、右焦點分別為
,
,離心率為e.
(1)若,設四邊形
的面積為
,四邊形
的面積為
,且
,求橢圓C的方程;
(2)若,設直線
與橢圓C相交于P,Q兩點,
分別為線段
,
的中點,坐標原點O在以MN為直徑的圓上,且
,求實數(shù)k的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長為的正方體
中,
為
的中點,
為
上任意一點,
,
為
上兩動點,且
的長為定值,則下面四個值中不是定值的是( )
A.點到平面
的距離B.直線
與平面
所成的角
C.三棱錐的體積D.二面角
的大小
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設向量,
,其中
,則下列判斷錯誤的是( )
A.向量與
軸正方向的夾角為定值(與
、
之值無關(guān))
B.的最大值為
C.與
夾角的最大值為
D.的最大值為l
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右頂點分別為
,
,上下頂點分別為
,
,左、右焦點分別為
,
,離心率為e.
(1)若,設四邊形
的面積為
,四邊形
的面積為
,且
,求橢圓C的方程;
(2)若,設直線
與橢圓C相交于P,Q兩點,
分別為線段
,
的中點,坐標原點O在以MN為直徑的圓上,且
,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點
處的切線方程是
,求函數(shù)
在
上的值域;
(2)當時,記函數(shù)
,若函數(shù)
有三個零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知圓心在
軸上,半徑為2的圓
位于
軸右側(cè),且與直線
相切.
(1)求圓的方程;
(2)在圓上,是否存在點
,使得直線
與圓
相交于不同的兩點
,且
的面積最大?若存在,求出點
的坐標及對應的
的面積;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com