日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,已知正方形ABCD的邊長為2,AC∩BD=O.將正方形ABCD沿對(duì)角BD折起,得到三棱錐A-BCD.
          (1)求證:平面AOC⊥平面BCD;
          (2)若三棱錐A-BCD的體積為,求AC的長.

          【答案】分析:(1)直接根據(jù)可得由正方形的性質(zhì)可得AO⊥BD以及BD⊥CO,根據(jù)線面垂直的判定定理,可得AO⊥平面BCD,進(jìn)而得到結(jié)論.
          (2)先根據(jù)三棱錐的體積求出棱錐的高,再分二面角為鈍角和銳角兩種情況分別求出AC的長即可.
          解答:(本小題滿分14分)
          解:(1)證明:因?yàn)锳BCD是正方形,
          所以BD⊥AO,BD⊥CO.…(1分)
          在折疊后的△ABD和△BCD中,
          仍有BD⊥AO,BD⊥CO.…(2分)
          因?yàn)锳O∩CO=O,所以BD⊥平面AOC.…(3分)
          因?yàn)锽D?平面BCD,
          所以平面AOC⊥平面BCD.…(4分)
          (2)解:設(shè)三棱錐A-BCD的高為h,
          由于三棱錐A-BCD的體積為,
          所以.…(5分)
          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185850280557193/SYS201310241858502805571018_DA/2.png">,所以.…(6分)
          以下分兩種情形求AC的長:
          ①當(dāng)∠AOC為鈍角時(shí),如圖,過點(diǎn)A作CO的垂線交CO的延長線于點(diǎn)H,
          由(1)知BD⊥平面AOC,所以BD⊥AH.
          又CO⊥AH,且CO∩BD=O,所以AH⊥平面BCD.
          所以AH為三棱錐A-BCD的高,即.…(7分)
          在Rt△AOH中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185850280557193/SYS201310241858502805571018_DA/5.png">,
          所以=.…(8分)
          在Rt△ACH中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185850280557193/SYS201310241858502805571018_DA/8.png">,
          .…(9分)
          所以.…(10分)
          ②當(dāng)∠AOC為銳角時(shí),如圖,過點(diǎn)A作CO的垂線交CO于點(diǎn)H,
          由(1)知BD⊥平面AOC,所以BD⊥AH.
          又CO⊥AH,且CO∩BD=O,所以AH⊥平面BCD.
          所以AH為三棱錐A-BCD的高,即.…(11分)
          在Rt△AOH中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185850280557193/SYS201310241858502805571018_DA/12.png">,
          所以=.…(12分)
          在Rt△ACH中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185850280557193/SYS201310241858502805571018_DA/15.png">,
          .…(13分)
          所以
          綜上可知,AC的長為.…(14分)
          點(diǎn)評(píng):本題主要考察面面垂直的判定以及線段長度的計(jì)算.一般在證明面面垂直時(shí),常轉(zhuǎn)化為證線線垂直,得線面垂直,進(jìn)而得到結(jié)論.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
          2
          ,AF=1
          ,M是線段EF的中點(diǎn).
          (1)證明:CM∥平面DFB
          (2)求異面直線AM與DE所成的角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•廣州模擬)如圖所示,已知正方形ABCD的邊長為2,AC∩BD=O.將正方形ABCD沿對(duì)角BD折起,得到三棱錐A-BCD.
          (1)求證:平面AOC⊥平面BCD;
          (2)若三棱錐A-BCD的體積為
          6
          3
          ,求AC的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•豐臺(tái)區(qū)二模)如圖所示,已知正方形ABCD的邊長為1,以A為圓心,AD長為半徑畫弧,交BA的延長線于P1,然后以B為圓心,BP1長為半徑畫弧,交CB的延長線于P2,再以C為圓心,CP2長為半徑畫弧,交DC的延長線于P3,再以D為圓心,DP3長為半徑畫弧,交AD的延長線于P4,再以A為圓心,AP4長為半徑畫弧,…,如此繼續(xù)下去,畫出的第8道弧的半徑是
          8
          8
          ,畫出第n道弧時(shí),這n道弧的弧長之和為
          n(n+1)π
          4
          n(n+1)π
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線段EF的中點(diǎn).

          求證:

          (1)AM∥平面BDE;

          (2)AM⊥平面BDF.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆黑龍江省哈爾濱市高二下期中考試文數(shù)學(xué)卷(解析版) 題型:解答題

          如圖所示,已知正方形和矩形所在的平面互相垂直, 是線段的中點(diǎn)。

          (1)證明:∥平面

          (2)求異面直線所成的角的余弦值。

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案