日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (理)已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=,an+2SnSn-1=0(n≥2),

          (1)判斷{}是否為等差數(shù)列?并證明你的結(jié)論;

          (2)求Sn和an;

          (3)求證:S12+S22+…+Sn2.

          (文)數(shù)列{an}的前n項(xiàng)和Sn(n∈N*),點(diǎn)(an,Sn)在直線y=2x-3n上.

          (1)求證:數(shù)列{an+3}是等比數(shù)列;

          (2)求數(shù)列{an}的通項(xiàng)公式;

          (3)數(shù)列{an}中是否存在成等差數(shù)列的三項(xiàng)?若存在,求出一組適合條件的三項(xiàng);若不存在,說明理由.

          (理)(1)解:S1=a1=,∴=2.                                              

          當(dāng)n≥2時(shí),an=Sn-Sn-1,即Sn-Sn-1=-2SnSn-1,                                        

          =2.

          故{}是以2為首項(xiàng),以2為公差的等差數(shù)列.                                  

          (2)解:由(1)得=2+(n-1)·2=2n,Sn=.                                        

          當(dāng)n≥2時(shí),an=-2SnSn-1=;                                           

          當(dāng)n=1時(shí),a1=.

          ∴an=                                                 

          (3)證法一:①當(dāng)n=1時(shí),成立.                               

          ②假設(shè)n=k時(shí),不等式成立,即成立.

          則當(dāng)n=k+1時(shí),

          =

          =

          =,

          即當(dāng)n=k+1時(shí),不等式成立.

          由①②可知對(duì)任意n∈N*不等式成立.                                          

          證法二:

          =

          =

          =

          =.

          (文)(1)證明:由題意知Sn=2an-3n,

          ∴an+1=Sn+1-Sn=2an+1-3(n+1)-2an+3n.

          ∴an+1=2an+3.                                                               

          ∴an+1+3=2(an+3).

          =2.

          又a1=S1=2a1-3,a1=3,

          ∴a1+3=6.                                                                 

          ∴數(shù)列{an+3}成以6為首項(xiàng)以2為公比的等比數(shù)列.                             

          (2)解:由(1)得an+3=6·2n-1=3·2n,

          ∴an=3·2n-3.                                                                 

          (3)解:設(shè)存在s、p、r∈N*且s<p<r使as、ap、ar成等差數(shù)列,

          ∴2ap=as+ar.

          ∴2(3·2p-3)=3·2s-3+3·2r-3.

          ∴2p+1=2s+2r,                                                               

          即2p-s+1=1+2r-s.                                                               (*)

          ∵s、p、r∈N*且s<p<r,

          ∴2p-s+1為偶數(shù),1+2r-s為奇數(shù).

          ∴(*)為矛盾等式,不成立.

          故這樣的三項(xiàng)不存在.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (理)已知數(shù)列{an}的前n項(xiàng)和Sn=3n-n2(n∈N*),則當(dāng)n>2時(shí)有(    )

          A.nan<Sn<na1        B.Sn<nan<na1        C.nan>Sn>na1       D.Sn>na1>nan

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (理)已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=,an+2SnSn-1=0(n≥2),

          (1)判斷{}是否為等差數(shù)列?并證明你的結(jié)論;

          (2)求Sn和an;

          (3)求證:S12+S22+…+Sn2.

          (文)數(shù)列{an}的前n項(xiàng)和Sn(n∈N*),點(diǎn)(an,Sn)在直線y=2x-3n上.

          (1)求證:數(shù)列{an+3}是等比數(shù)列;

          (2)求數(shù)列{an}的通項(xiàng)公式;

          (3)數(shù)列{an}中是否存在成等差數(shù)列的三項(xiàng)?若存在,求出一組適合條件的三項(xiàng);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (理)已知數(shù)列{an}的前n項(xiàng)之和Sn與an滿足關(guān)系式:nSn+1=(n+2)Sn+an+2(n∈N+).

          (1)若a1=0,求a2、a3的值;

          (2)求證:a1=0是數(shù)列{an}為等差數(shù)列的充要條件.

          (文)如圖,直線l:y=(x-2)和雙曲線C:=1(a>0,b>0)交于A、B兩點(diǎn),且|AB|=,又l關(guān)于直線l1:y=x對(duì)稱的直線l2與x軸平行.

          (1)求雙曲線C的離心率;

          (2)求雙曲線C的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (理)已知數(shù)列{an}中,a1=t(t≠0且t≠1),a2=t2,當(dāng)x=t時(shí),函數(shù)f(x)=(an-an-1)x2-(an+1-an)x(n≥2)取得極值.

          (1)求證:數(shù)列{an+1-an}(n∈N*)是等比數(shù)列;

          (2)記bn=anln|an|(n∈N*),當(dāng)t=時(shí),數(shù)列{bn}中是否存在最大項(xiàng).若存在,是第幾項(xiàng)?若不存在,請(qǐng)說明理由.

          (文)已知等比數(shù)列{xn}各項(xiàng)均為不等于1的正數(shù),數(shù)列{yn}滿足=2(a>0且a≠1),設(shè)y3=18,y6=12.

          (1)求證:數(shù)列{yn}是等差數(shù)列;

          (2)若存在自然數(shù)M,使得n>M時(shí),xn>1恒成立,求M的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (理)已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,對(duì)于任意n∈N*,滿足關(guān)系Sn=2an-2.

          (1)求數(shù)列{an}的通項(xiàng)公式;

          (2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,且bn=,求證:對(duì)任意正整數(shù)n,總有Tn<2;

          (3)在正數(shù)數(shù)列{cn}中,設(shè)(cn)n+1=an+1(n∈N*),求數(shù)列{lncn}中的最大項(xiàng).

          (文)已知數(shù)列{xn}滿足xn+1-xn=()n,n∈N*,且x1=1.設(shè)an=xn,且T2n=a1+2a2+3a3+…+ (2n-1)a2n-1+2na2n.

          (1)求xn的表達(dá)式;

          (2)求T2n;

          (3)若Qn=1(n∈N*),試比較9T2n與Qn的大小,并說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案