日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (理)已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,對(duì)于任意n∈N*,滿(mǎn)足關(guān)系Sn=2an-2.

          (1)求數(shù)列{an}的通項(xiàng)公式;

          (2)設(shè)數(shù)列{bn}的前n項(xiàng)和為T(mén)n,且bn=,求證:對(duì)任意正整數(shù)n,總有Tn<2;

          (3)在正數(shù)數(shù)列{cn}中,設(shè)(cn)n+1=an+1(n∈N*),求數(shù)列{lncn}中的最大項(xiàng).

          (文)已知數(shù)列{xn}滿(mǎn)足xn+1-xn=()n,n∈N*,且x1=1.設(shè)an=xn,且T2n=a1+2a2+3a3+…+ (2n-1)a2n-1+2na2n.

          (1)求xn的表達(dá)式;

          (2)求T2n;

          (3)若Qn=1(n∈N*),試比較9T2n與Qn的大小,并說(shuō)明理由.

          (理)(1)解:∵Sn=2an-2(n∈N*),                                               ①

          ∴Sn-1=2an-1-2(n≥2,n∈N*).                                               ② 

          ①-②,得an=2an-2an-1(n≥2,n∈N*).

          ∵an≠0,∴=2(n≥2,n∈N*),

          即數(shù)列{an}是等比數(shù)列.                                                      

          ∵a1=S1,

          ∴a1=2a1-2,即a1=2.

          ∴an=2n(n∈N*).                                                          

          (2)證明:∵對(duì)任意正整數(shù)n,總有bn=,                         

          ∴Tn=

          =1+1<2.                                 

          (3)解:由(cn)n+1=an+1(n∈N*),知lncn=.

          令f(x)=,則f′(x)=.

          ∵在區(qū)間(0,e)上,f′(x)>0,在區(qū)間(e,+∞)上,f′(x)<0,

          ∴在區(qū)間(e,+∞)上f(x)為單調(diào)遞減函數(shù).                                         

          ∴n≥2且n∈N*時(shí),{lncn}是遞減數(shù)列.

          又lnc1<lnc2,∴數(shù)列{lncn}中的最大項(xiàng)為lnc2=ln3.                             

          (文)解:(1)∵xn+1-xn=()n,

          ∴xn=x1+(x2-x1)+(x3-x2)+…+(xn-xn-1)

          =1+()+()2+…+()n-1

          =

          =.                                                          

          當(dāng)n=1時(shí)上式也成立,

          ∴xn=(n∈N*).                                                

          (2)an=.

          ∵T2n=a1+2a2+3a3+…+(2n-1)a2n-1+2na2n

          =()2+2()3+3()4+…+(2n-1)()2n+2n()2n+1,                        ①

          T2n=()3+2()4+3()5+…+(2n-1)()2n+1+2n()2n+2.              ②

          ①-②,得T2n=()2+()3+…+()2n+1-2n()2n+2.                       

          T2n=-2n()2n+2

          =.

          ∴T2n=.                             

          (3)由(2)可得9T2n=.

          又Qn=,

          當(dāng)n=1時(shí),22n=4,(2n+1)2=9,∴9T2n<Qn;                                        

          當(dāng)n=2時(shí),22n=16,(2n+1)2=25,∴9T2n<Qn;                                      

          當(dāng)n≥3時(shí),22n=[(1+1)n2=()2>(2n+1)2,

          ∴9T2n>Qn.

          綜上所述,當(dāng)n=1,2時(shí),9T2n<Qn;當(dāng)n≥3時(shí),9T2n>Qn.


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (理)已知數(shù)列{an}的前n項(xiàng)和Sn=3n-n2(n∈N*),則當(dāng)n>2時(shí)有(    )

          A.nan<Sn<na1        B.Sn<nan<na1        C.nan>Sn>na1       D.Sn>na1>nan

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (理)已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足a1=,an+2SnSn-1=0(n≥2),

          (1)判斷{}是否為等差數(shù)列?并證明你的結(jié)論;

          (2)求Sn和an;

          (3)求證:S12+S22+…+Sn2.

          (文)數(shù)列{an}的前n項(xiàng)和Sn(n∈N*),點(diǎn)(an,Sn)在直線(xiàn)y=2x-3n上.

          (1)求證:數(shù)列{an+3}是等比數(shù)列;

          (2)求數(shù)列{an}的通項(xiàng)公式;

          (3)數(shù)列{an}中是否存在成等差數(shù)列的三項(xiàng)?若存在,求出一組適合條件的三項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (理)已知數(shù)列{an}的前n項(xiàng)之和Sn與an滿(mǎn)足關(guān)系式:nSn+1=(n+2)Sn+an+2(n∈N+).

          (1)若a1=0,求a2、a3的值;

          (2)求證:a1=0是數(shù)列{an}為等差數(shù)列的充要條件.

          (文)如圖,直線(xiàn)l:y=(x-2)和雙曲線(xiàn)C:=1(a>0,b>0)交于A、B兩點(diǎn),且|AB|=,又l關(guān)于直線(xiàn)l1:y=x對(duì)稱(chēng)的直線(xiàn)l2與x軸平行.

          (1)求雙曲線(xiàn)C的離心率;

          (2)求雙曲線(xiàn)C的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (理)已知數(shù)列{an}中,a1=t(t≠0且t≠1),a2=t2,當(dāng)x=t時(shí),函數(shù)f(x)=(an-an-1)x2-(an+1-an)x(n≥2)取得極值.

          (1)求證:數(shù)列{an+1-an}(n∈N*)是等比數(shù)列;

          (2)記bn=anln|an|(n∈N*),當(dāng)t=時(shí),數(shù)列{bn}中是否存在最大項(xiàng).若存在,是第幾項(xiàng)?若不存在,請(qǐng)說(shuō)明理由.

          (文)已知等比數(shù)列{xn}各項(xiàng)均為不等于1的正數(shù),數(shù)列{yn}滿(mǎn)足=2(a>0且a≠1),設(shè)y3=18,y6=12.

          (1)求證:數(shù)列{yn}是等差數(shù)列;

          (2)若存在自然數(shù)M,使得n>M時(shí),xn>1恒成立,求M的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案