日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若直線與曲線滿足下列兩個(gè)條件:

          (i)直線在點(diǎn)處與曲線相切;(ii)曲線在點(diǎn)附近位于直線的兩側(cè).則稱直線在點(diǎn)處“切過”曲線.

          下列命題正確的是__________(寫出所有正確命題的編號).

          ①直線在點(diǎn)處“切過”曲線

          ②直線在點(diǎn)處“切過”曲線;

          ③直線在點(diǎn)處“切過”曲線;

          ④直線在點(diǎn)處“切過”曲線;

          ⑤直線在點(diǎn)處“切過”曲線.

          【答案】①③④

          【解析】對于由于,,直線是過點(diǎn)曲線的切線,又當(dāng)時(shí), ,當(dāng)時(shí) ,滿足曲線附近位于直線兩側(cè), 命題正確對于,由,,而直線斜率不存在在點(diǎn)處不與曲線相切, 命題錯(cuò)誤;對于,,得,,直線是過點(diǎn)的曲線的切線,時(shí), 時(shí), ,滿足曲線附近位于直線兩側(cè), 命題正確對于,,得,直線是過點(diǎn)的曲線的切線,時(shí) 時(shí), 滿足曲線附近位于直線兩側(cè), 命題正確;對于,

          ,得,,曲線在處的切線為,設(shè),,當(dāng)時(shí), ,當(dāng)時(shí), 上有極小值也是最小值為, 恒在的上方,不滿足曲線在點(diǎn)附近位于直線的兩側(cè),命題錯(cuò)誤故答案為①③④.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】邗江中學(xué)高二年級某班某小組共10人,利用寒假參加義工活動(dòng),已知參加義工活動(dòng)次數(shù)為1,2,3的人數(shù)分別為3,3,4.現(xiàn)從這10人中選出2人作為該組代表參加座談會(huì).

          (1)記“選出2人參加義工活動(dòng)的次數(shù)之和為4”為事件,求事件發(fā)生的概率;

          (2)設(shè)為選出2人參加義工活動(dòng)次數(shù)之差的絕對值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】把長和寬分別為和2的長方形沿對角線折成的二面角,下列正確的命題序號是__________

          ①四面體外接球的體積隨的改變而改變;

          的長度隨的增大而增大;

          ③當(dāng)時(shí),長度最長;

          ④當(dāng)時(shí),長度等于.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2018屆北京市海淀區(qū)】如圖,三棱柱側(cè)面底面,

          分別為棱的中點(diǎn).

          Ⅰ)求證: ;

          Ⅱ)求三棱柱的體積;

          Ⅲ)在直線上是否存在一點(diǎn),使得平面?若存在,求出的長;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】無窮數(shù)列滿足: 為正整數(shù),且對任意正整數(shù), 為前項(xiàng) , 中等于的項(xiàng)的個(gè)數(shù).

          )若,請寫出數(shù)列的前7項(xiàng);

          )求證:對于任意正整數(shù),必存在,使得;

          )求證:“”是“存在,當(dāng)時(shí),恒有 成立”的充要條件。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(本小題滿分14分)已知函數(shù)

          )求函數(shù)的單調(diào)區(qū)間;

          )若存在兩條直線,都是曲線的切線,求實(shí)數(shù)的取值范圍;

          )若,求實(shí)數(shù)的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(2017·太原三模)已知等比數(shù)列{an}的各項(xiàng)均為不等于1的正數(shù),數(shù)列{bn}滿足bn=lganb3=18,b6=12,則數(shù)列{bn}的前n項(xiàng)和的最大值為(  )

          A. 126 B. 130 C. 132 D. 134

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖矩形中, .點(diǎn)邊上, , 沿直線向上折起成.記二面角的平面角為,當(dāng) 時(shí),

          ①存在某個(gè)位置,使;

          ②存在某個(gè)位置,使;

          ③任意兩個(gè)位置,直線和直線所成的角都不相等.

          以上三個(gè)結(jié)論中正確的序號是

          A. B. ①② C. ①③ D. ②③

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)有兩個(gè)不同的極值點(diǎn),,

          (1)求實(shí)數(shù)的取值范圍

          (2)設(shè)上述的取值范圍為,若存在,使對任意不等式恒成立,求實(shí)數(shù)的取值范圍

          查看答案和解析>>

          同步練習(xí)冊答案