日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系xOy中,曲線y=x-6x+1與坐標(biāo)軸的交點(diǎn)都在圓C上.
          (Ⅰ)求圓C的方程;
          (Ⅱ)試判斷是否存在斜率為1的直線,使其與圓C交于A, B兩點(diǎn),且OA⊥OB,若存在,求出該直線方程,若不存在,請說明理由.
          (Ⅰ).(Ⅱ)該直線存在,其方程為.

          試題分析:(Ⅰ)曲線軸的交點(diǎn)為
          軸的交點(diǎn)為,
          故可設(shè)的圓心為,
          則有
          解得
          則圓的半徑為,
          所以圓的方程為               4分
          (Ⅱ)假設(shè)直線存在,依題意,設(shè)直線方程為,
          并設(shè),
          ,消去
          得到方程
          由已知可得,判別式
          因此,
          從而,   ①
          由于,可得
          ,
          所以    ②
          由①,②得,滿足
          所以該直線存在,其方程為           8分
          點(diǎn)評:中檔題,中檔題,曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。恰當(dāng)?shù)倪\(yùn)用圓中的“特征三角形”,轉(zhuǎn)化成點(diǎn)到直線的距離問題,更為簡潔。對存在性問題,常常是先假設(shè)存在,應(yīng)用已知條件,確定其存在性,達(dá)到解體目的。本題較難。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線與雙曲線有公共焦點(diǎn),點(diǎn)是曲線在第一象限的交點(diǎn),且
          (Ⅰ)求雙曲線的方程;
          (Ⅱ)以雙曲線的另一焦點(diǎn)為圓心的圓與直線相切,圓.過點(diǎn)作互相垂直且分別與圓、圓相交的直線,設(shè)被圓截得的弦長為被圓截得的弦長為,問:是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓C:的離心率為
          直線:y=x+2與原點(diǎn)為圓心,以橢圓C的短軸長為直
          徑的圓相切.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過點(diǎn)的直線與橢圓交于,兩點(diǎn).設(shè)直線的斜率,在軸上是否存在點(diǎn),使得是以GH為底邊的等腰三角形. 如果存在,求出實(shí)數(shù)的取值范圍,如果不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知△的兩個頂點(diǎn)的坐標(biāo)分別是,且所在直線的斜率之積等于
          (Ⅰ)求頂點(diǎn)的軌跡的方程,并判斷軌跡為何種圓錐曲線;
          (Ⅱ)當(dāng)時,過點(diǎn)的直線交曲線兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對稱
          點(diǎn)為(不重合) 試問:直線軸的交點(diǎn)是否是定點(diǎn)?若是,求出定點(diǎn),若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知動圓過定點(diǎn)A(4,0), 且在y軸上截得的弦MN的長為8.
          (Ⅰ) 求動圓圓心的軌跡C的方程;
          (Ⅱ) 已知點(diǎn)B(-1,0), 設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點(diǎn)P, Q, 若x軸是的角平分線, 證明直線l過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (13分)已知橢圓C:(a>b>0)的兩個焦點(diǎn)分別為F1(﹣1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點(diǎn)
          (I)求橢圓C的離心率:
          (II)設(shè)過點(diǎn)A(0,2)的直線l與橢圓C交于M,N兩點(diǎn),點(diǎn)Q是線段MN上的點(diǎn),且,求點(diǎn)Q的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長度單位,以原點(diǎn)D為極點(diǎn),以x軸正半軸為極軸,曲線Cl的極坐標(biāo)方程為,曲線C2的參數(shù)方程為為參數(shù))。
          (1)當(dāng)時,求曲線Cl與C2公共點(diǎn)的直角坐標(biāo); 
          (2)若,當(dāng)變化時,設(shè)曲線C1與C2的公共點(diǎn)為A,B,試求AB中點(diǎn)M軌跡的極坐標(biāo)方程,并指出它表示什么曲線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知直線與平面平行,P是直線上的一定點(diǎn),平面內(nèi)的動點(diǎn)B滿足:PB與直線 。那么B點(diǎn)軌跡是 (    )                          
          A.橢圓B.雙曲線C.拋物線D.兩直線

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知點(diǎn)是直角坐標(biāo)平面內(nèi)的動點(diǎn),點(diǎn)到直線(是正常數(shù))的距離為,到點(diǎn)的距離為,且1.
          (1)求動點(diǎn)P所在曲線C的方程;
          (2)直線過點(diǎn)F且與曲線C交于不同兩點(diǎn)A、B,分別過A、B點(diǎn)作直線的垂線,對應(yīng)的垂足分別為,求證=;
          (3)記,
          (A、B、是(2)中的點(diǎn)),,求的值.

          查看答案和解析>>

          同步練習(xí)冊答案