日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分12分)在直角坐標(biāo)系xOy中,曲線C1的點均在C2:(x-5)2+y2=9外,且對C1上任意一點M,M到直線x=﹣2的距離等于該點與圓C2上點的距離的最小值.
          (1)求曲線C1的方程;
          (2)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點,過P作圓C2的兩條切線,分別與曲線C1相交于
          點A,B和C,D.證明:當(dāng)P在直線x=﹣4上運動時,四點A,B,C,D的縱坐標(biāo)之積為定值.
          (1).
          (2)當(dāng)P在直線上運動時,四點A,B,C,D的縱坐標(biāo)之積為定值6400.
          (1) 曲線上任意一點M到圓心的距離等于它到直線的距離,由拋物線的定義可知曲線C1為拋物線,此方程為.
          (2) 當(dāng)點P在直線上運動時,設(shè)P的坐標(biāo)為,又,則過P且與圓
          相切的切線方程為.則
          整理得
          設(shè)過P所作的兩條切線的斜率分別為,則是方程①的兩個實根,


          設(shè)四點A,B,C,D的縱坐標(biāo)分別為,
          同理由可得
          這樣可得,然后展開將代入化簡即可得到定值.
          由題設(shè)知,曲線上任意一點M到圓心的距離等于它到直線的距離,因此,曲線是以為焦點,直線為準(zhǔn)線的拋物線,故其方程為.
          (2)當(dāng)點P在直線上運動時,P的坐標(biāo)為,又,則過P且與圓
          相切得直線的斜率存在且不為0,每條切線都與拋物線有兩個交點,切線方程為.
          于是
          整理得       ①
          設(shè)過P所作的兩條切線的斜率分別為,則是方程①的兩個實根,
               ②
              ③
          設(shè)四點A,B,C,D的縱坐標(biāo)分別為,則是方程③的兩個實根,
          所以   ④
          同理可得    ⑤
          于是由②,④,⑤三式得

          .
          所以,當(dāng)P在直線上運動時,四點A,B,C,D的縱坐標(biāo)之積為定值6400.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (1)過點P(0,0),Q(4,2),R(-1,-3)三點的圓的標(biāo)準(zhǔn)方程式什么?
          (2)已知動點M到點A(2,0)的距離是它到點B(-1,0)的距離的倍,求:(1)動點M的軌跡方程;(2)根據(jù)取值范圍指出軌跡表示的圖形.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (理)(本題滿分14分)如圖,已知直線,直線以及上一點

          (Ⅰ)求圓心M在上且與直線相切于點的圓⊙M的方程.
          (Ⅱ)在(Ⅰ)的條件下;若直線分別與直線、圓⊙依次相交于AB、C三點,
          求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分10分)
          求圓心在直線上,且經(jīng)過圓與圓的交點的圓方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點,使得以該點為圓心,1為半徑的圓與圓有公共點,則的最大值是    

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分) 已知圓過兩點,且圓心上.
          (1)求圓的方程;
          (2)設(shè)是直線上的動點,是圓的兩條切線,為切點,求四邊形面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          直線和圓相交于點A、B,則AB的垂直平分線方程是               

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知圓與拋物線的準(zhǔn)線相切,則的值為()
          A.1B.2C.D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          能夠使得圓  上恰有兩個點到直線 的距離等于1的 的一個可能值為(   )
          A.2B.C.3D.

          查看答案和解析>>

          同步練習(xí)冊答案