日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知向量 =( sinωx,1), =(cosωx,cos2ωx+1),設(shè)函數(shù)f(x)=
          (1)若函數(shù)f(x)的圖象關(guān)于直線x= 對稱,且ω∈[0,3]時,求函數(shù)f(x)的單調(diào)增區(qū)間;
          (2)在(1)的條件下,當(dāng) 時,函數(shù)f(x)有且只有一個零點(diǎn),求實(shí)數(shù)b的取值范圍.

          【答案】
          (1)解:向量 ,

          函數(shù)

          ∵函數(shù)f(x)圖象關(guān)于直線 對稱,

          (k∈Z),

          解得: (k∈Z),

          所以函數(shù)f(x)的單調(diào)增區(qū)間為 (k∈Z)


          (2)解:由(1)知(2)由(1)知 ,

          函數(shù)f(x)單調(diào)遞增;.

          2x+ ∈[ , ],即x∈ 函數(shù)f(x)單調(diào)遞減

          ,∴當(dāng) }時函數(shù)f(x)有且只有一個零點(diǎn),

          { }


          【解析】根據(jù)平面向量數(shù)量積的坐標(biāo)表示達(dá)式將f(x)用、的坐標(biāo)表示,利用二倍角正余弦公式、輔助角公式將f(x)化簡成y=Asin()+B的形式,令+=(kZ)可解出;令-+2k+2k(kZ),解出x即可得到f(x)的單調(diào)增區(qū)間;(2)討論函數(shù)f(x)在[0,]內(nèi)的單調(diào)性,求出f(x)的最值,然后數(shù)形結(jié)合,分類討論..
          【考點(diǎn)精析】根據(jù)題目的已知條件,利用正弦函數(shù)的單調(diào)性和正弦函數(shù)的對稱性的相關(guān)知識可以得到問題的答案,需要掌握正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù);正弦函數(shù)的對稱性:對稱中心;對稱軸

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司為評估兩套促銷活動方案(方案1運(yùn)作費(fèi)用為5元/件;方案2的運(yùn)作費(fèi)用為2元/件),在某地區(qū)部分營銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn)(每個試點(diǎn)網(wǎng)點(diǎn)只采用一種促銷活動方案),運(yùn)作一年后,對比該地區(qū)上一年度的銷售情況,制作相應(yīng)的等高條形圖如圖所示.
          (1)請根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動方案(不必說明理由);
          (2)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動運(yùn)作費(fèi)用),為制定本年度該地區(qū)的產(chǎn)品銷售價格,統(tǒng)計上一年度的8組售價xi(單位:元/件,整數(shù))和銷量yi(單位:件)(i=1,2,…,8)如下表所示:

          售價x

          33

          35

          37

          39

          41

          43

          45

          47

          銷量y

          840

          800

          740

          695

          640

          580

          525

          460

          ①請根據(jù)下列數(shù)據(jù)計算相應(yīng)的相關(guān)指數(shù)R2 , 并根據(jù)計算結(jié)果,選擇合適的回歸模型進(jìn)行擬合;
          ②根據(jù)所選回歸模型,分析售價x定為多少時?利潤z可以達(dá)到最大.

          49428.74

          11512.43

          175.26

          124650

          (附:相關(guān)指數(shù)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (其中t為參數(shù)).現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=6cosθ.
          (Ⅰ) 寫出直線l普通方程和曲線C的直角坐標(biāo)方程;
          (Ⅱ) 過點(diǎn)M(﹣1,0)且與直線l平行的直線l1交C于A,B兩點(diǎn),求|AB|.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)
          (I)若α是第二象限角,且 的值;
          (Ⅱ)求函數(shù)f(x)在[0,2π]上的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=ex(x+1),給出下列命題:
          ①當(dāng)x>0時,f(x)=﹣e﹣x(x﹣1);
          ②函數(shù)f(x)有2個零點(diǎn);
          ③f(x)<0的解集為(﹣∞,﹣1)∪(0,1),
          x1 , x2∈R,都有|f(x1)﹣f(x2)|<2.其中正確命題的個數(shù)是( )
          A.4
          B.3
          C.2
          D.1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=sin(cosx)﹣x與函數(shù)g(x)=cos(sinx)﹣x在區(qū)間 內(nèi)都為減函數(shù),設(shè) ,且cosx1=x1 , sin(cosx2)=x2 , cos(sinx3)=x3 , 則x1 , x2 , x3的大小關(guān)系是( )
          A.x1<x2<x3
          B.x3<x1<x2
          C.x2<x1<x3
          D.x2<x3<x1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了響應(yīng)教育部頒布的《關(guān)于推進(jìn)中小學(xué)生研學(xué)旅行的意見》,某校計劃開設(shè)八門研學(xué)旅行課程,并對全校學(xué)生的選擇意向進(jìn)行調(diào)查(調(diào)查要求全員參與,每個學(xué)生必須從八門課程中選出唯一一門課程).本次調(diào)查結(jié)果整理成條形圖如下.圖中,已知課程A,B,C,D,E為人文類課程,課程F,G,H為自然科學(xué)類課程.為進(jìn)一步研究學(xué)生選課意向,結(jié)合圖表,采取分層抽樣方法從全校抽取1%的學(xué)生作為研究樣本組(以下簡稱“組M”).
          (Ⅰ)在“組M”中,選擇人文類課程和自然科學(xué)類課程的人數(shù)各有多少?
          (Ⅱ)為參加某地舉辦的自然科學(xué)營活動,從“組M”所有選擇自然科學(xué)類課程的同學(xué)中隨機(jī)抽取4名同學(xué)前往,其中選擇課程F或課程H的同學(xué)參加本次活動,費(fèi)用為每人1500元,選擇課程G的同學(xué)參加,費(fèi)用為每人2000元.
          (。┰O(shè)隨機(jī)變量X表示選出的4名同學(xué)中選擇課程G的人數(shù),求隨機(jī)變量X的分布列;
          (ⅱ)設(shè)隨機(jī)變量Y表示選出的4名同學(xué)參加科學(xué)營的費(fèi)用總和,求隨機(jī)變量Y的期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在邊長為2的菱形ABCD中,∠BAD=60°,將△BCD沿對角線BD折起到△B'CD的位置,使平面BC'D⊥平面ABD,E是BD的中點(diǎn),F(xiàn)A⊥平面ABD,且FA=2 ,如圖2.
          (1)求證:FA∥平面BC'D;
          (2)求平面ABD與平面FBC'所成角的余弦值;
          (3)在線段AD上是否存在一點(diǎn)M,使得C'M⊥平面FBC?若存在,求 的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在銳角△ABC中, =
          (1)求角A;
          (2)若a= ,求bc的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案