日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,三棱柱的側(cè)棱垂直于底面,且,,,是棱的中點.

          1)證明:;

          2)求二面角的余弦值.

          【答案】1)詳見解析;(2.

          【解析】

          1)根據(jù)平面,四邊形是矩形,由中點,且,利用平面幾何知識,可得,又平面,所以,根據(jù)線面垂直的判定定理可有平面,從而得證.

          2)分別以,,,軸建立空間直角坐標(biāo)系,得到,,分別求得平和平面的法向量,代入二面角向量公式求解.

          1)證明:∵平面

          ∴四邊形是矩形,

          中點,且,

          ,,,

          .,

          ,∴相似,

          ,∴,

          ,

          ,∴平面

          平面,

          平面,∴,

          平面,∴.

          2)如圖,

          分別以,,軸建立空間直角坐標(biāo)系,

          ,,

          設(shè)平面的法向量為,則,,

          解得:,

          同理,平面的法向量

          設(shè)二面角的大小為,

          .

          即二面角的余弦值為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為比較甲、乙兩名高中學(xué)生的數(shù)學(xué)素養(yǎng),對課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進行指標(biāo)測驗(指標(biāo)值滿分為100分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達圖,則下面敘述不正確的是(

          A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng)

          C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)學(xué)運算最強

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在等腰中,,分別為,的中點,的中點,在線段上,且。將沿折起,使點的位置(如圖2所示),且。

          (1)證明:平面

          (2)求平面與平面所成銳二面角的余弦值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于三次函數(shù),給出定義:設(shè)是函數(shù)的導(dǎo)數(shù),的導(dǎo)數(shù),若方程有實數(shù)解,則稱點為函數(shù)拐點”.經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有拐點;任何一個三次函數(shù)都有對稱中心,且拐點就是對稱中心.設(shè)函數(shù).

          1)當(dāng)時,求的值;

          2)若不等式恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)的圖象關(guān)于直線對稱.為自然對數(shù)的底數(shù))

          1)若的圖象在點處的切線經(jīng)過點,求的值;

          2)若不等式恒成立,求正整數(shù)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市據(jù)實際情況主要采取以下四種扶貧方式:第一,以工代賑方式,指政府投資建設(shè)基礎(chǔ)設(shè)施工程,組織貧困地區(qū)群眾參加工程建設(shè)并獲得勞務(wù)報酬,第二,整村推進方式指以貧困村為具體幫扶對象,幫扶對口到村,資金安排到村,扶貧效益到戶,第三,科技扶貧方式,指組織科技人員深入貧困鄉(xiāng)村實地指導(dǎo)、技術(shù)培訓(xùn)等傳授科技知識,第四,移民搬遷方式,指對目前極少數(shù)居住在生存條件惡劣、自然資源貧乏地區(qū)的特困人口,實行自愿移民,該市為了2020年更好的完成精準(zhǔn)扶貧各項任務(wù),2020年初在全市貧困戶(分一般貧困戶和五特戶兩類)中隨機抽取了5000戶就目前的主要四種扶貧方式行了問卷調(diào)查,支持每種扶貧方式的結(jié)果如表:

          調(diào)查的貧困戶

          支持以工代賑戶數(shù)

          支持整村推進戶數(shù)

          支持科技扶貧戶數(shù)

          支持移民搬遷戶數(shù)

          一般貧困戶

          1200

          1600

          200

          五特戶(五保戶和特困戶)

          100

          100

          已知在被調(diào)查的5000戶中隨機抽取一戶支持整村推進的概率為0.36.

          (Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的貧困戶中抽取50戶進行深入訪談,問應(yīng)在支持科技扶貧戶數(shù)中抽取多少戶?

          (Ⅱ)雖然五特戶在全市的貧困戶所占比例不大,但本次調(diào)查要有意義,其中這次調(diào)查的五特戶戶數(shù)不能低于被調(diào)查總戶數(shù)的9.2%,已知,求本次調(diào)查有意義的概率是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)若時,請討論函數(shù)的單調(diào)性;

          (Ⅱ)當(dāng)時,若上有零點,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】201991日,《西安市生活垃圾分類管理辦法》正式實施.根據(jù)規(guī)定,生活垃圾分為可回收物、有害垃圾、廚余垃圾和其他垃圾,個人和單位如果不按規(guī)定進行垃圾分類將面臨罰款,并納入征信系統(tǒng).為調(diào)查市民對垃圾分類的了解程度,某調(diào)查小組隨機抽取了某小區(qū)的100位市民,請他們指出生活中若干項常見垃圾的種類,把能準(zhǔn)確分類不少于3項的稱為比較了解,少于三項的稱為不太了解.調(diào)查結(jié)果如下:

          0

          1

          2

          3

          4

          5

          5項以上

          男(人)

          1

          5

          15

          8

          6

          7

          3

          女(人)

          0

          4

          11

          13

          10

          12

          5

          1)完成如下列聯(lián)表并判斷是否有99%的把握認(rèn)為了解垃圾分類與性別有關(guān)?

          比較了解

          不太了解

          合計

          合計

          2)從對垃圾分類比較了解的市民中用分層抽樣的方式抽取8位,現(xiàn)從這8位市民中隨機選取兩位,求至多有一位男市民的概率.

          附:

          0.050

          0.010

          0.001

          3.841

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)若函數(shù)在其定義域內(nèi)為單調(diào)函數(shù),求的取值范圍;

          2)設(shè)函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案