日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•深圳二模)各項為正數(shù)的數(shù)列{an}滿足
          a
          2
          n
          =4Sn-2an-1
          (n∈N*),其中Sn為{an}前n項和.
          (1)求a1,a2的值;
          (2)求數(shù)列{an}的通項公式;
          (3)是否存在正整數(shù)m、n,使得向量
          a
          =(2an+2,m)與向量
          b
          =(-an+5,3+an)垂直?說明理由.
          分析:(1)將n=1、n=2分別代入已知等式,結(jié)合公式Sn=a1+a2+…+an解方程即可得到a1=1、a2=3;
          (2)根據(jù)
          a
          2
          n
          =4Sn-2an-1
          ,用n+1代替n得
          a
          2
          n+1
          =4Sn+1-2an+1-1
          ,兩式相減再化簡整理得(an+1+an)(an+1-an-2)=0,由{an}的各項為正數(shù)可得an+1-an=2,從而得到數(shù)列{an}構(gòu)成公差為2的等差數(shù)列,結(jié)合a1=1即可算出數(shù)列{an}的通項公式;
          (3)由(2)求出的通項公式,化簡得
          a
          =(2(2n+3),m),
          b
          =(-(2n+9),2n+2).設(shè)
          a
          b
          a
          b
          =0,結(jié)合向量數(shù)量積坐標運算公式進行化簡,得m=4(n+1)+16+
          7
          n+1
          ,通過討論m、n的值為正整數(shù),可得存在正整數(shù)m=45、n=6,能使向量
          a
          =(2an+2,m)與向量
          b
          =(-an+5,3+an)垂直.
          解答:解:(1)當n=1時,
          a
          2
          1
          =4S1-2a1-1
          ,化簡得(a1-1)2=0,解之得a1=1
          當n=2時,
          a
          2
          2
          =4S2-2a2-1
          =4(a1+a2)-2a2-1
          將a1=1代入化簡,得a22-2a2-3=0,解之得a2=3或-1(舍負)
          綜上,a1、a2的值分別為a1=1、a2=3;
          (2)由
          a
          2
          n
          =4Sn-2an-1
          …①,
          a
          2
          n+1
          =4Sn+1-2an+1-1
          …②
          ②-①,得
          a
          2
          n+1
          -
          a
          2
          n
          =4an+1-2an+1+2an=2(an+1+an)

          移項,提公因式得(an+1+an)(an+1-an-2)=0
          ∵數(shù)列{an}的各項為正數(shù),
          ∴an+1+an>0,可得an+1-an-2=0
          因此,an+1-an=2,得數(shù)列{an}構(gòu)成以1為首項,公差d=2的等差數(shù)列
          ∴數(shù)列{an}的通項公式為an=1+2(n-1)=2n-1;
          (3)∵向量
          a
          =(2an+2,m)與向量
          b
          =(-an+5,3+an
          ∴結(jié)合(2)求出的通項公式,得
          a
          =(2(2n+3),m),
          b
          =(-(2n+9),2n+2)
          若向量
          a
          b
          ,則
          a
          b
          =-2(2n+3)(2n+9)+m(2n+2)=0
          化簡得m=4(n+1)+16+
          7
          n+1

          ∵m、n是正整數(shù),
          ∴當且僅當n+1=7,即n=6時,m=45,可使
          a
          b
          符合題意
          綜上所述,存在正整數(shù)m=45、n=6,能使向量
          a
          =(2an+2,m)與向量
          b
          =(-an+5,3+an)垂直.
          點評:本題著重考查了等差數(shù)列的定義、通項公式與求和公式,會根據(jù)數(shù)列的遞推關(guān)系求數(shù)列的前幾項與數(shù)列通項公式,考查了平面向量的數(shù)量積運算性質(zhì).同時考查了學生的運算求解、推理論證和變形處理能力,屬于中檔題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          (2013•深圳二模)在△ABC中,角A,B,C的對邊分別為a,b,c,已知a=3,b=5,c=7.
          (1)求角C的大;
          (2)求sin(B+
          π3
          )的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•深圳二模)非空數(shù)集A={a1,a2,a3,…,an}(n∈N*)中,所有元素的算術(shù)平均數(shù)記為E(A),即E(A)=
          a1+a2+a3+…+an
          n
          .若非空數(shù)集B滿足下列兩個條件:
          ①B⊆A;
          ②E(B)=E(A),則稱B為A的一個“保均值子集”.
          據(jù)此,集合{1,2,3,4,5}的“保均值子集”有( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•深圳二模)i 為虛數(shù)單位,則 i+
          1
          i
          等于( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•深圳二模)函數(shù)f(x)=
          lg(2-x)
          x-1
          的定義域是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•深圳二模)下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是( 。

          查看答案和解析>>

          同步練習冊答案