日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)).

          (1)若函數(shù)處取得極大值,求的值;

          (2)時,函數(shù)圖象上的點(diǎn)都在所表示的區(qū)域內(nèi),求的取值范圍;

          (3)證明:,.

           

          【答案】

          (1) ;(2) .

          (3)數(shù)學(xué)歸納法可知,,

          【解析】

          試題分析:(1),由 經(jīng)檢驗(yàn)符合題意 (3分)

          (2)依題意知,不等式恒成立.令,

          當(dāng)k≤0時,取x=1,有,故k≤0不合.(4分)

          當(dāng)k>0時, g′(x)=-2kx=.

          令g′(x)=0,得x1=0,x2>-1.         (5分)

          ①當(dāng)k≥時,≤0,g′(x)<0在(0,+∞)上恒成立,因此g(x)在[0,+∞)上單調(diào)遞減,從而對任意的x∈[0,+∞),總有g(shù)(x)≤g(0)=0,故k≥符合題意,6分②當(dāng)0<k<時,>0, 對于x∈,g′(x)>0,

          故g(x)在內(nèi)單調(diào)遞增,因此當(dāng)取x0時,g(x0)>g(0)=0,不合.

          綜上,. (8分)

          (3)證明:當(dāng)n=1時,不等式左邊=2-ln3<2=右邊,所以不等式成立.(9分)

          當(dāng)n≥2時,在(2)中取k=,得 (10分)

          代入上式得:  (12分)

          ≤2-ln3+

          -ln(2n+1)≤2-ln3+1-<2.

          綜上,,        (14分)

          考點(diǎn):本題主要考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極值,數(shù)學(xué)歸納法證明不等式。

          點(diǎn)評:難題,本題屬于導(dǎo)數(shù)應(yīng)用中的常見問題,(2)是恒成立問題,注意通過構(gòu)造函數(shù),研究函數(shù)的最值達(dá)到解題目的。(3)利用數(shù)學(xué)歸納法。涉及對數(shù)函數(shù),要特別注意函數(shù)的定義域。

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          x
          -1
          ,則f(x)的最小值是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•自貢一模)已知函數(shù)f(x)=  
          x+1
          ,  x
          ≤0,
          log2x
          ,x>0
          ,
          則函數(shù)y=f[f(x)]+1的零點(diǎn)個數(shù)是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(2x+1)的定義域?yàn)閇1,2],則函數(shù)f(4x+1)的定義域?yàn)椋ā 。?/div>

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•永州一模)已知函數(shù)f(x)=ln(1+x)-p
          x

          (1)若函數(shù)f(x)在定義域內(nèi)為減函數(shù),求實(shí)數(shù)p的取值范圍;
          (2)如果數(shù)列{an}滿足a1=3,an+1=[1+
          1
          n2(n+1)2
          ]an+
          1
          4n
          ,試證明:當(dāng)n≥2時,4≤an<4e
          3
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•浦東新區(qū)一模)已知函數(shù)f(x)=
          x2+1
          -ax
          ,其中a>0.
          (1)若2f(1)=f(-1),求a的值;
          (2)當(dāng)a≥1時,判斷函數(shù)f(x)在區(qū)間[0,+∞)上的單調(diào)性;
          (3)若函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù),求a的取值范圍.

          查看答案和解析>>