日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)已知直線L過點P(2,1),且與兩坐標(biāo)軸正向圍成三角形的面積為4,求直線L的方程;
          (2)已知橢圓C的中心在原點,離心率等于0.8,焦距是8,求橢圓C的標(biāo)準(zhǔn)方程.
          分析:(1)先設(shè)出直線L的截距式方程,利用直線L與兩坐標(biāo)軸正向圍成三角形的面積為4以及直線L過點(2,1),就可得到關(guān)于橫縱截距的兩個等式,求出橫縱截距,得到直線L的方程.
          (2)根據(jù)橢圓的焦距是8,求出c值,根據(jù)離心率等于0.8求出a的值,再根據(jù)a,b,c的關(guān)系式求出b的值,再判斷焦點所在坐標(biāo)軸,就可得到橢圓方程.
          解答:解:(1)設(shè)直線L方程為:
          x
          a
          +
          y
          b
          =1
          (a>0,b>0)
          ∵直線L過點P(2,1),且與兩坐標(biāo)軸正向圍成三角形的面積為4,
          2
          a
          +
          1
          b
          =1
          1
          2
          ab=4

          a=4
          b=2

          ∴所求直線方程為
          x
          4
          +
          y
          2
          =1

          (2)由已知,e=
          c
          a
          =
          4
          5
          ,2c=8,
          得a=5,c=4,
          ∴b=3,
          當(dāng)橢圓焦點在x軸上時,橢圓的方程為:
          x2
          25
          +
          y2
          9
          =1
          ,
          當(dāng)橢圓焦點在y軸上時,橢圓方程為
          y2
          25
          +
          x2
          9
          =1

          ∴橢圓的方程為:
          x2
          25
          +
          y2
          9
          =1
          y2
          25
          +
          x2
          9
          =1
          點評:本題(1)考查了待定系數(shù)法求直線方程,因為已知直線與坐標(biāo)軸所圍三角形的面積,所以設(shè)直線的截距式計算量較。2)考察了橢圓方程的求法,一定要判斷焦點位置.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知直線l過點P(3,4),它在y軸上的截距是在x軸上截距的2倍,求直線l的方程.
          (2)求與圓C:x2+y2-2x+4y+1=0同圓心,且與直線2x-y+1=0相切的圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知直線l過點P(1,0,-1),平行于向量
          a
          =(2,1,1)
          ,平面α過直線l與點M(1,2,3),則平面α的法向量不可能是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (1)已知直線L過點P(2,1),且與兩坐標(biāo)軸正向圍成三角形的面積為4,求直線L的方程;
          (2)已知橢圓C的中心在原點,離心率等于0.8,焦距是8,求橢圓C的標(biāo)準(zhǔn)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖北省部分重點中學(xué)聯(lián)考高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          (1)已知直線L過點P(2,1),且與兩坐標(biāo)軸正向圍成三角形的面積為4,求直線L的方程;
          (2)已知橢圓C的中心在原點,離心率等于0.8,焦距是8,求橢圓C的標(biāo)準(zhǔn)方程.

          查看答案和解析>>

          同步練習(xí)冊答案