日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知p:關(guān)于x的方程4x2+4(m-2)x+1=0無實根,q:關(guān)于x的方程x2+mx+1=0的兩實根都小于1,若p∧q是真命題,且¬(p∨q)是假命題,求實數(shù)m的取值范圍.
          【答案】分析:根據(jù)二次方程根與判別式的關(guān)系,可求出p為真時m的取值范圍,根據(jù)二次方程根與系數(shù)的關(guān)系,可求出q為真時m的取值范圍,結(jié)合p∧q是真命題,且¬(p∨q)是假命題,可得實數(shù)m的取值范圍
          解答:解:∵¬(p∨q)是假命題,
          ∴p∨q是真命題.
          ∵方程4x2+4(m-2)x+1=0無實根,
          ∴△=16(m-2)2-4×4<0,
          ∴1<m<3,
          ∴p為真命題時,實數(shù)m的取值范圍為A={m|1<m<3}.
          構(gòu)造函數(shù)f(x)=x2+mx+1.
          ∵方程x2+mx+1=0有兩個小于1的實根,
          ,
          解得:m≥2;
          ∴q為真命題時,實數(shù)m的取值范圍為B={m|m≥2},
          ∴p∧q是真命題時,實數(shù)m的取值范圍是:
          M=A∩B={m|1<m<3}∩{m|m≥2}={m|2≤m<3};
          p∨q是真命題時,實數(shù)m的取值范圍是:
          N=A∪B={m|1<m<3}∪{m|m≥2}={m|m>1},
          ∴p∨q是真命題,即¬(p∨q)是假命題時,實數(shù)m的取值范圍是:
          M∩N={m|2≤m<3}∩{m|m>1}={m|2≤m<3},
          綜上所述,實數(shù)m的取值范圍是[2,3).
          點評:本題以命題的真假判斷為載體考查了方程根的個數(shù)與判別式的關(guān)系及根與系數(shù)的關(guān)系,熟練掌握二次方程的相關(guān)知識點是解答的關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知p:關(guān)于x的方程2x+m-1=0有實數(shù)解;q:函數(shù)f(x)=|x-m|+1在(-∞,2)上為減函數(shù).若p或q為真,p且q為假,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知p:關(guān)于x的方程x2+mx+1=0有兩個不相等的負數(shù)根q:關(guān)于x的方程4x2+4(m-2)x+1=0無實根;如果復(fù)合命題“p或q”為真,“p且q”為假,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知p:關(guān)于x的方程x2+2x+m-1=0沒有實根,q:不等式4x2+4(m-2)x+1>0的解集為R,
          (1)若¬q為假命題,求m的取值范圍;
          (2)若p∨q為真命題,p∧q為假命題,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知p:關(guān)于x的方程4x2+4(m-2)x+1=0無實根,q:關(guān)于x的方程x2+mx+1=0的兩實根都小于1,若p∧q是真命題,且¬(p∨q)是假命題,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2009•聊城一模)已知p:關(guān)于x的方程ax2+2x+1=0至少有一個負實根,q:a≤1,則q是p的( 。

          查看答案和解析>>

          同步練習冊答案