日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)求證:2n+2•3n+5n-4能被25整除.
          (2)求證:
          C
          0
          n
          -
          1
          2
          C
          1
          n
          +
          1
          3
          C
          2
          n
          -
          1
          4
          C
          3
          n
          +…+(-1)n
          1
          n+1
          C
          n
          n
          =
          1
          n+1
          分析:(1)用數(shù)學(xué)歸納法證明:①當(dāng)n=1時(shí),2n+2•3n+5n-4=8×3+5-4=25,能被25整除;②假設(shè)n=k時(shí),2k+2•3k+5k-4能被25整除,由此導(dǎo)出當(dāng)n=k+1時(shí),2k+3•3k+1+5(k+1)-4能被25整除即可.
          (2))由
          1
          r+1
          C
          r
          n
          =
          1
          r+1
          n!
          r!(n-r)!
          =
          1
          n+1
          C
          r+1
          n+1
          ,能夠證明
          C
          0
          n
          -
          1
          2
          C
          1
          n
          +
          1
          3
          C
          2
          n
          -
          1
          4
          C
          3
          n
          +…+(-1)n
          1
          n+1
          C
          n
          n
          =
          1
          n+1
          解答:證明:(1)用數(shù)學(xué)歸納法證明:
          ①當(dāng)n=1時(shí),2n+2•3n+5n-4=8×3+5-4=25,能被25整除,成立;
          ②假設(shè)n=k時(shí),成立,即2k+2•3k+5k-4能被25整除,
          則當(dāng)n=k+1時(shí),2k+3•3k+1+5(k+1)-4=6(2k+2•3k)+5k+5-4
          =(2k+2•3k+5k-4)+5(2k+2•3k)+5
          =(2k+2•3k+5k-4)+20•6k+5,
          ∵2k+2•3k+5k-4能被5整除,20•6k+5能被25整除,
          ∴(2k+2•3k+5k-4)+20•6k+5能被25整除,即n=k+1時(shí)成立.
          由①②知2n+2•3n+5n-4能被25整除.
          (2)∵
          1
          r+1
          C
          r
          n
          =
          1
          r+1
          n!
          r!(n-r)!
          =
          1
          n+1
          ×
          (n+1)!
          (r+1)!(n-r)!
          =
          1
          n+1
          C
          r+1
          n+1
          ,
          C
          0
          n
          -
          1
          2
          C
          1
          n
          +
          1
          3
          C
          2
          n
          -
          1
          4
          C
          3
          n
          +…+(-1)n
          1
          n+1
          C
          n
          n

          =
          1
          n+1
          [
          C
          1
          n+1
          -
          C
          2
          n+1
          +
          C
          3
          n+1
          +…+(-1)nC
           
          n+1
          n+1
          ],
          當(dāng)n為奇數(shù)時(shí),
          C
          1
          n+1
          -
          C
          2
          n+1
          +
          C
          3
          n+1
          +…+(-1)nC
           
          n+1
          n+1

          =(
          C
          1
          n+1
          +
          C
          3
          n+1
          +…+
          C
          n
          n+1
          )-(
          C
          2
          n+1
          +
          C
          4
          n+1
          +…+
          C
          n+1
          n+1

          =
          C
          0
          n+1
          =1.
          當(dāng)n為偶數(shù)時(shí),
          C
          1
          n+1
          -
          C
          2
          n+1
          +
          C
          3
          n+1
          +…+(-1)nC
           
          n+1
          n+1

          =(
          C
          1
          n+1
          +
          C
          3
          n+1
          +…+
          C
          n+1
          n+1
          )+(
          C
          2
          n+1
          +
          C
          4
          n+1
          +…+C
          C
          n
          n+1

          =
          C
          0
          n+1
          =1.
          1
          n+1
          [
          C
          1
          n+1
          -
          C
          2
          n+1
          +
          C
          3
          n+1
          +…+(-1)nC
           
          n+1
          n+1
          ]=
          1
          n+1

          C
          0
          n
          -
          1
          2
          C
          1
          n
          +
          1
          3
          C
          2
          n
          -
          1
          4
          C
          3
          n
          +…+(-1)n
          1
          n+1
          C
          n
          n
          =
          1
          n+1
          點(diǎn)評(píng):本題考查數(shù)學(xué)歸納法的應(yīng)用,考查二項(xiàng)式定理的應(yīng)用.解題時(shí)要認(rèn)真審題,仔細(xì)分析組合數(shù)性質(zhì),注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=2an-2n(n∈N*),
          (1)求證數(shù)列{an+2}為等比數(shù)列;
          (2)若數(shù)列{bn}滿足bn=log2(an+2),Tn為數(shù)列{
          bn
          an+2
          }的前n項(xiàng)和,求證:Tn
          3
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足an≠0,anSn+1-an+1Sn=2n-1an+1an,n∈N*
          (1)求證Sn=2n-1an
          (2)設(shè)bn=
          anan+1
          求數(shù)列{bn}的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省蚌埠二中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          (1)求證:2n+2•3n+5n-4能被25整除.
          (2)求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省蚌埠二中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          (1)求證:2n+2•3n+5n-4能被25整除.
          (2)求證:

          查看答案和解析>>

          同步練習(xí)冊(cè)答案