日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在直四棱柱ABCDA1B1C1D1中,已知底面ABCD是菱形,點P是側(cè)棱C1C的中點.

          1)求證:AC1∥平面PBD;

          2)求證:BDA1P

          【答案】(1)見解析;(2)見解析

          【解析】

          1)連接ACBDO點,連接OP,證出AC1OP,再由線面平行的判定定理即可證出.

          2)首先由線面垂直的判定定理證出BD⊥面AC1,再由線面垂直的定義即可證出.

          1

          連接ACBDO點,連接OP,

          因為四邊形ABCD是正方形,對角線ACBD于點O,

          所以O點是AC的中點,所以AO=OC

          又因為點P是側(cè)棱C1C的中點,所以CP=PC1,

          ACC1中,,所以AC1OP

          又因為OPPBD,AC1PBD,

          所以AC1∥平面PBD

          2)連接A1C1.因為ABCDA1B1C1D1為直四棱柱,

          所以側(cè)棱C1C垂直于底面ABCD,

          BD平面ABCD,所以CC1BD,

          因為底面ABCD是菱形,所以ACBD,

          ACCC1=CACAC1,CC1AC1,所以BD⊥面AC1,

          又因為PCC1CC1ACC1A1,所以P∈面ACC1A1

          因為A1∈面ACC1A1,所以A1PAC1,所以BDA1P

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】2018年上海國際青少年足球邀請賽將在6月下旬舉行.一體育機構(gòu)對某高中一年級750名男生,600名女生采用分層抽樣的方法抽取45名學生對足球進行興趣調(diào)查,統(tǒng)計數(shù)據(jù)如下所示:

          1:男生

          結(jié)果

          有興趣

          無所謂

          無興趣

          人數(shù)

          2

          3

          2:女生

          結(jié)果

          有興趣

          無所謂

          無興趣

          人數(shù)

          12

          2

          (1),的值;

          (2)運用獨立性檢驗的思想方法分析:請你填寫列聯(lián)表,并判斷是否在犯錯誤的概率不超過的前提下認為非“有興趣”與性別有關系?

          男生

          女生

          總計

          有興趣

          非有興趣

          總計

          (3)45人所有無興趣的學生中隨機選取2人,求所選2人中至少有一個女生的概率.

          附:,.

          0.10

          0.05

          0.01

          2.706

          3.841

          6.635

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓 的長軸長為6,且橢圓與圓 的公共弦長為.

          (1)求橢圓的方程.

          (2)過點作斜率為的直線與橢圓交于兩點, ,試判斷在軸上是否存在點,使得為以為底邊的等腰三角形.若存在,求出點的橫坐標的取值范圍,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】選修4-4:坐標系與參數(shù)方程

          已知曲線的參數(shù)方程為為參數(shù),),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

          (1)若極坐標為的點在曲線C1上,求曲線C1與曲線C2的交點坐標;

          (2)若點的坐標為,且曲線C1與曲線C2交于兩點,求|PB||PD|

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某種海洋生物身體的長度(單位:米)與生長年限(單位:年)滿足如下的函數(shù)關系:.(設該生物出生時

          1)需經(jīng)過多少時間,該生物的身長超過8米;

          2)設出生后第年,該生物長得最快,求的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】n為正整數(shù),集合A=對于集合A中的任意元素,

          M=

          n=3,, ,MM的值

          n=4,BA的子集,且滿足對于B中的任意元素,相同時,M是奇數(shù)不同時,M是偶數(shù).求集合B中元素個數(shù)的最大值;

          給定不小于2n,BA的子集且滿足對于B中的任意兩個不同的元素,

          M=0.寫出一個集合B,使其元素個數(shù)最多,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】中石化集團獲得了某地深海油田塊的開采權,集團在該地區(qū)隨機初步勘探了部分幾口井,取得了地質(zhì)資料.進入全面勘探時期后,集團按網(wǎng)絡點米布置井位進行全面勘探.由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費用,勘探初期數(shù)據(jù)資料見下表:

          井號

          1

          2

          3

          4

          5

          6

          坐標(x,y)(km)

          (2,30)

          (4,40)

          (5,60)

          (6,50)

          (8,70)

          (1,y)

          鉆探深度(km)

          2

          4

          5

          6

          8

          10

          出油量(L)

          40

          70

          110

          90

          160

          205

          (Ⅰ)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計y的預報值;

          (Ⅱ)現(xiàn)準備勘探新井7(1,25),若通過1、3、5、7號井計算出的,的值(精確到0.01)與(I)中b,a的值差不超過10%,則使用位置最接近的已有舊井6(1,y),否則在新位置打開,請判斷可否使用舊井?(參考公式和計算結(jié)果:,

          (Ⅲ)設出油量與勘探深度的比值k不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井數(shù)X的分布列與數(shù)學期望.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          1時,求上的單調(diào)區(qū)間;

          2 均恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知命題p:方程表示焦點在x軸上的橢圓;命題q:雙曲線的離心率e.若命題“pq”為真命題,“pq”為假命題,求m的取值范圍.

          查看答案和解析>>

          同步練習冊答案