日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)是各項(xiàng)都是正數(shù)的等比數(shù)列的前項(xiàng)和,若,則公比的取值范圍是(    )

            A.          B.      C.        D.

          B


          解析:

          ①當(dāng)時(shí)顯然成立;②當(dāng)時(shí),,綜上,當(dāng)時(shí),選B。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•重慶一模)設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對(duì)任意n∈N*,2
          Sn
          是an+2 和an的等比中項(xiàng).
          (Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)證明
          1
          S1
          +
          1
          S2
          +…+
          1
          Sn
          <1;
          (Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對(duì)滿足n>m 的一切正整數(shù)n,不等式2Sn-4200>
          an2
          2
          恒成立,求這樣的正整數(shù)m共有多少個(gè)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)無(wú)窮數(shù)列{an}的各項(xiàng)都是正數(shù),Sn是它的前n項(xiàng)之和,對(duì)于任意正整數(shù)n,an與2的等差中項(xiàng)等于Sn與2的等比中項(xiàng),則該數(shù)列的通項(xiàng)公式為
           
          (n∈N*).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:福建省三明一中2012屆高三11月學(xué)段考試數(shù)學(xué)理科試題 題型:044

          已知等比數(shù)列{an}的各項(xiàng)都是正數(shù),且2a1+3a2=1,a3是9a2與a6的等比中項(xiàng),

          (Ⅰ)求{an}的通項(xiàng)公式;

          (Ⅱ)設(shè)數(shù)列{bn}滿足bn,求數(shù)列的前n項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)無(wú)窮數(shù)列  的各項(xiàng)都是正數(shù),  是它的前  項(xiàng)之和, 對(duì)于任意正整數(shù) , 與 2 的等差中項(xiàng)等于  與 2 的等比中項(xiàng), 則該數(shù)列的通項(xiàng)公式為 _______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011屆重慶市七區(qū)高三第一次調(diào)研測(cè)試數(shù)學(xué)理卷 題型:解答題

          (本小題滿分12分)
          設(shè)數(shù)列的各項(xiàng)都為正數(shù),其前項(xiàng)和為,已知對(duì)任意,的等比中項(xiàng).
          (Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
          (Ⅱ)證明;
          (Ⅲ)設(shè)集合,且,若存在,使對(duì)滿足的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個(gè)?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案