已知橢圓的焦點為
,點
是橢圓
上的一點,
與
軸的交點
恰為
的中點,
.
(1)求橢圓的方程;
(2)若點為橢圓的右頂點,過焦點
的直線與橢圓
交于不同的兩點
,求
面積的取值范圍.
(1)(2)
解析試題分析:(1)根據(jù)已知分析可得點橫坐標(biāo)為1,縱坐標(biāo)為
,,即點
。法一:將
代入橢圓方程,結(jié)合
且
,解方程組可得
的值。法二:根據(jù)橢圓的定義求點
到兩焦點的距離的和即為
,再根據(jù)關(guān)系式
求得
。(2)設(shè)過點
的直線
的斜率為
,顯然
(注意討論直線斜率存在與否)。當(dāng)直線的斜率不存在時,直線方程為
,將
代入橢圓方程可得
的縱坐標(biāo),從而可得
,根據(jù)橢圓圖像的對稱性可知
,因此可得
。當(dāng)直線斜率存在時設(shè)直線
的方程為
,將直線與橢圓方程聯(lián)立,消去
(或
)得關(guān)于
的一元二次方程,從而可得根與系數(shù)的關(guān)系。根據(jù)弦長公式求
,再用點到線的距離公式求點
到直線
的距離
,所以
。最后根據(jù)基本不等式求其范圍即可。
解:(1)因為為
的中點,
為
的中點,
,
所以,且
. 1分
所以.
因為,
所以. 2分
因為, 3分
所以.
所以橢圓的方程為
. 4分
(2)設(shè)過點的直線
的斜率為
,顯然
.
(1)當(dāng)不存在時,直線
的方程為
,
所以.
因為
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)(2011•天津)設(shè)橢圓+
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2.點P(a,b)滿足|PF2|=|F1F2|.
(Ⅰ)求橢圓的離心率e;
(Ⅱ)設(shè)直線PF2與橢圓相交于A,B兩點,若直線PF2與圓(x+1)2+=16相交于M,N兩點,且|MN|=
|AB|,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的左、右焦點分別為
,上頂點為A,在x軸負半軸上有一點B,滿足
三點的圓與直線
相切.
(1)求橢圓C的方程;
(2)過右焦點作斜率為k的直線
與橢圓C交于M,N兩點,線段MN的垂直平分線與x軸相交于點P(m,0),求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓經(jīng)過點P(1.
),離心率e=
,直線l的方程為x=4.
(1)求橢圓C的方程;
(2)AB是經(jīng)過右焦點F的任一弦(不經(jīng)過點P),設(shè)直線AB與直線l相交于點M,記PA,PB,PM的斜率分別為.問:是否存在常數(shù)λ,使得
?若存在,求λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓,直線
的方程為
,過右焦點
的直線
與橢圓交于異于左頂點
的
兩點,直線
,
交直線
分別于點
,
.
(1)當(dāng)時,求此時直線
的方程;
(2)試問,
兩點的縱坐標(biāo)之積是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點
,焦點在
軸上,離心率為
,右焦點到右頂點的距離為
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓
交于
兩點,是否存在實數(shù)
,使
成立?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為
,其短軸兩端點為
.
(1)求橢圓的方程;
(2)若是橢圓
上關(guān)于
軸對稱的兩個不同點,直線
與
軸分別交于點
.判斷以
為直徑的圓是否過點
,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓,經(jīng)過橢圓
的右焦點F及上頂點B,過圓外一點
傾斜角為
的直線
交橢圓于C,D兩點,
(1)求橢圓的方程;
(2)若右焦點F在以線段CD為直徑的圓E的外部,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:(a>b>0),過點(0,1),且離心率為
.
(1)求橢圓C的方程;
(2)A,B為橢圓C的左右頂點,直線l:x=2與x軸交于點D,點P是橢圓C上異于A,B的動點,直線AP,BP分別交直線l于E,F(xiàn)兩點.證明:當(dāng)點P在橢圓C上運動時,
恒為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com