日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x+mlnx+
          2
          x
          (m∈R)

          (I)當(dāng)m=1時(shí),求f(x)的單調(diào)區(qū)間;
          (Ⅱ)若曲線y=f(x)在點(diǎn)(2,f(x))處的切線與直線y=-
          1
          2
          x
          平行,求m的值.
          分析:(I)當(dāng)m=1時(shí),確定函數(shù)的定義域,求導(dǎo)函數(shù),利用導(dǎo)數(shù)的正負(fù),即可求f(x)的單調(diào)區(qū)間;
          (Ⅱ)求導(dǎo)函數(shù),利用導(dǎo)數(shù)的幾何意義,建立方程,即可求m的值.
          解答:解:(I)函數(shù)f(x)的定義域?yàn)閧x|x>0}
          當(dāng)m=1時(shí),f(x)=x+lnx+
          2
          x
          ,f′(x)=
          (x-1)(x+2)
          x2

          f′(x)=
          (x-1)(x+2)
          x2
          >0可得x<-2或x>1;令f′(x)=
          (x-1)(x+2)
          x2
          <0,可得-2<x<1
          ∵x>0,∴,f(x)的單調(diào)增區(qū)間為(1,+∞),單調(diào)減區(qū)間為(0,1);
          (Ⅱ)f′(x)=1+
          m
          x
          -
          2
          x2

          ∵曲線y=f(x)在點(diǎn)(2,f(x))處的切線與直線y=-
          1
          2
          x
          平行,
          f′(2)=1+
          m
          2
          -
          1
          2
          =-
          1
          2

          ∴m=-2.
          點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的計(jì)算能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
          (1)求m的值,并確定f(x)的解析式;
          (2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實(shí)數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請(qǐng)求出a的值,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:浙江省東陽(yáng)中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022

          已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年河南省許昌市長(zhǎng)葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

          已知函數(shù)f(x)、g(x),下列說(shuō)法正確的是( )
          A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
          B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
          C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
          D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案