日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在直角梯形ABCD中,AB∥CD,AB=2BC=4,CD=3,E為AB中點(diǎn),過E作EF⊥CD,垂足為F,(如圖一),將此梯形沿EF折起,使得平面ADFE垂直于平面FCBE,(如圖二).
          (1)求證:BF∥平面ACD;
          (2)求多面體ADFCBE的體積.

          【答案】分析:(1)先證明BCFE為正方形,AE和DF都垂直于平面BCFE,設(shè)O是正方形BCFE的中心,取AC得中點(diǎn)為H,證明四邊形OHDF為矩形,OF平行于DH,再由直線和平面平行的判定定理可得OF∥平面ACD,即BF∥平面ACD.
          (2)把多面體ADFCBE分成兩個(gè)棱錐:三棱錐A-BCE 和四棱錐C-AEFD,分別求出 VA-BCE和 VC-AEFD 的值,相加即得所求.
          解答:解:(1)證明:∵直角梯形ABCD中,AB∥CD,AB=2BC=4,CD=3,E為AB中點(diǎn),EF⊥CD,垂足為F,∴BCFE為正方形.
          設(shè)BF和CE的交點(diǎn)為O,則O是正方形BCFE的中心.
          再由平面ADFE垂直于平面FEBC,可得AE和DF都垂直于平面BCFE.
          取AC得中點(diǎn)為H,則由三角形的中位線性質(zhì)可得OH平行且等于AE的一半,故OH平行且等于DF,故四邊形OHDF為矩形,故OF平行于DH.
          再由DH?平面ACD,OF不在平面ACD內(nèi),故OF∥平面ACD,即BF∥平面ACD.
          (2)把多面體ADFCBE分成兩個(gè)棱錐:三棱錐A-BCE 和四棱錐C-AEFD,
          由題意可得CF⊥平面AEFD,AE⊥平面BCFE.
          ∴VA-BCE=S△BCE•AE=××BC•BE•AE==
          VC-AEFD=×SAEFD•CF=×(AE+DF)•EF•CF=×(2+1)×2×2=2,
          故多面體ADFCBE的體積為 VA-BCE+VC-AEFD=+2=
          點(diǎn)評:本題主要考查直線和平面平行的判定定理的應(yīng)用,用“分割法”求棱錐的體積,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在直角梯形ABCD中,∠D=∠BAD=90°,AD=DC=
          12
          AB=a(如圖),將△ADC沿AC折起,使D到D′.記面ACD′為α,面ABC為β,面BCD′為γ.
          精英家教網(wǎng)
          (1)若二面角α-AC-β為直二面角(如圖),求二面角β-BC-γ的大;
          精英家教網(wǎng)
          (2)若二面角α-AC-β為60°(如圖),求三棱錐D′-ABC的體積.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•鹽城二模)如圖,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,動(dòng)點(diǎn)P在△BCD內(nèi)運(yùn)動(dòng)(含邊界),設(shè)
          AP
          AB
          AD
          (α,β∈R)
          ,則α+β的取值范圍是
          [1,
          4
          3
          ]
          [1,
          4
          3
          ]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,在直角梯形ABCD中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.E,F(xiàn),G分別為線段PC,PD,BC的中點(diǎn),現(xiàn)將△PDC折起,使平面PDC⊥平面ABCD.
          (1)求證:AP∥平面EFG;
          (2)在線段PB上確定一點(diǎn)Q,使PC⊥平面ADQ,試給出證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直角梯形ABCD中,∠BAD=90°,AD∥BC,AB=2,AD=
          3
          2
          ,BC=
          1
          2
          ,橢圓以A、B為焦點(diǎn)且經(jīng)過點(diǎn)D.
          (Ⅰ)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求橢圓的方程;
          (Ⅱ)以該橢圓的長軸為直徑作圓,判斷點(diǎn)C與該圓的位置關(guān)系.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,CD=3,S△BCD=6,則梯形ABCD的面積為
          8
          8
          ,點(diǎn)A到BD的距離AH=
          4
          5
          4
          5

          查看答案和解析>>

          同步練習(xí)冊答案