【題目】設(shè)△ABC的內(nèi)角A,B,C所對邊分別為a,b,c.向量,
,
且.
(1)求A的大小;
(2)若,求
的值.
【答案】(1);(2)
.
【解析】試題分析:(1)通過已知及平面向量數(shù)量積的坐標(biāo)運(yùn)算可得利用正弦定理,同角三角函數(shù)基本關(guān)系式可求tanA的值,結(jié)合特殊角的三角函數(shù)值即可得解A的值.
(2)由(1). 又
,解得
.
.通過
可得解.
試題解析:(1)因為,所以
,即
.
由正弦定理得, ,
所以.
在△ABC中, ,
,所以
.
若,則
,矛盾.
若,則
.
在△ABC中, ,所以
.
(2)由(1)知, ,所以
.
因為,所以
.
解得(負(fù)值已舍).
因為,所以
或
.
在△ABC中,又,故
,所以
.
因為,所以
.
從而
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015 年 12 月,華中地區(qū)數(shù)城市空氣污染指數(shù)“爆表”,此輪污染為 2015 年以來最嚴(yán)重的污染過程,為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到華中某城市 2015 年 12 月份某星期星期一到星期日某一時間段車流量與
的數(shù)據(jù)如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車流量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散點圖知與
具有線性相關(guān)關(guān)系,求
關(guān)于
的線性回歸方程;(提示數(shù)據(jù):
)
(2)利用(1)所求的回歸方程,預(yù)測該市車流量為 12 萬輛時的濃度.
參考公式:回歸直線的方程是,
其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是圓
上任意一點,點
與點
關(guān)于原點對稱,線段
的垂直平分線分別與
,
交于
,
兩點.
(1)求點的軌跡
的方程;
(2)過點的動直線
與點
的軌跡
交于
,
兩點,在
軸上是否存在定點
,使以
為直徑的圓恒過這個點?若存在,求出點
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱錐中,已知異面直線
與
所成的角為
,給出下面三個命題:
:若
,則此四棱錐的側(cè)面積為
;
:若
分別為
的中點,則
平面
;
:若
都在球
的表面上,則球
的表面積是四邊形
面積的
倍.
在下列命題中,為真命題的是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升,
升,
升,1斗為10升,則下列判斷正確的是( )
A. ,
,
依次成公比為2的等比數(shù)列,且
B. ,
,
依次成公比為2的等比數(shù)列,且
C. ,
,
依次成公比為
的等比數(shù)列,且
D. ,
,
依次成公比為
的等比數(shù)列,且
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的菱形中,
,點
分別是
的中點,
,沿
將
翻折到
,連接
,得到如圖的五棱錐
,且
(1)求證: 平面
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),在[0,1]上f(x)=2x+ln(x+1)-1.
(1)求函數(shù)f(x)的解析式;并判斷f(x)在[-1,1]上的單調(diào)性(不要求證明);
(2)解不等式f(2x-1)+f(1-x2)≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求
的單調(diào)區(qū)間;
(2)若關(guān)于的不等式
對一切
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com