【題目】大豆,古稱菽,原產(chǎn)中國,在中國已有五千年栽培歷史。皖北多平原地帶,黃河故道土地肥沃,適宜種植大豆。2018年春,為響應(yīng)中國大豆參與世界貿(mào)易的競爭,某市農(nóng)科院積極研究,加大優(yōu)良品種的培育工作。其中一項(xiàng)基礎(chǔ)工作就是研究晝夜溫差大小與大豆發(fā)芽率之間的關(guān)系。為此科研人員分別記錄了5天中每天100粒大豆的發(fā)芽數(shù)得如下數(shù)據(jù)表格:
科研人員確定研究方案是:從5組數(shù)據(jù)中選3組數(shù)據(jù)求線性回歸方程,再用求得的回歸方程對剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求剩下的2組數(shù)據(jù)恰是不相鄰的2天數(shù)據(jù)的概率;
(2)若選取的是4月5日、6日、7日三天數(shù)據(jù)據(jù)此求關(guān)于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與實(shí)際數(shù)據(jù)的誤差絕對值均不超過1粒,則認(rèn)為得到的線性回歸方程是可靠的,請檢驗(yàn)(Ⅱ)中回歸方程是否可靠?
注:
,
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把個相同的小球放到三個編號為
的盒子中,且每個盒子內(nèi)的小球數(shù)要多于盒子的編號數(shù),則共有多少種放法( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2﹣4y+1=0,點(diǎn)M(﹣1,﹣1),從圓C外一點(diǎn)P向該圓引一條切線,記切點(diǎn)為T.
(1)若過點(diǎn)M的直線l與圓交于A,B兩點(diǎn)且|AB|=2,求直線l的方程;
(2)若滿足|PT|=|PM|,求使|PT|取得最小值時點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐S﹣ABCD中,M是SB的中點(diǎn),AB∥CD,BC⊥CD,且AB=BC=2,CD=SD=1,又SD⊥面SAB.
(1)證明:CD⊥SD;
(2)證明:CM∥面SAD;
(3)求四棱錐S﹣ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行象棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為,乙獲勝的概率為
,各局比賽結(jié)果相互獨(dú)立.
(1)求甲在4局以內(nèi)(含4局)贏得比賽的概率;
(2)用X表示比賽決出勝負(fù)時的總局?jǐn)?shù),求隨機(jī)變量X的分布列和均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中中,曲線
的參數(shù)方程為
為參數(shù),
). 以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,已知直線
的極坐標(biāo)方程為
.
(1)設(shè)是曲線
上的一個動點(diǎn),當(dāng)
時,求點(diǎn)
到直線
的距離的最大值;
(2)若曲線上所有的點(diǎn)均在直線
的右下方,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016·貴陽第二次聯(lián)考)在△ABC中,角A,B,C的對邊分別為a,b,c,向量m=(a+b,sin A-sin C),向量n=(c,sin A-sin B),且m∥n.
(1)求角B的大;
(2)設(shè)BC的中點(diǎn)為D,且AD=,求a+2c的最大值及此時△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點(diǎn)是
,
,且橢圓
經(jīng)過點(diǎn)
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過左焦點(diǎn)且傾斜角為45°的直線
與橢圓
交于
兩點(diǎn),求線段
的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com