日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)F1、F2分別是橢圓C:(a>b>0)的左右焦點(diǎn)。
          (1)設(shè)橢圓C上點(diǎn)到兩點(diǎn)F1、F2距離和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);
          (2)設(shè)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段KF1的中點(diǎn)B的軌跡方程;
          (3)設(shè)點(diǎn)P是橢圓C上的任意一點(diǎn),過(guò)原點(diǎn)的直線L與橢圓相交于M,N兩點(diǎn),當(dāng)直線PM,PN的斜率都存在,并記為kPM,kPN,試探究kPM·kPN的值是否與點(diǎn)P及直線L有關(guān),不必證明你的結(jié)論。
          解:(1)由于點(diǎn)在橢圓上,

          又2a=4,
          ∴橢圓C的方程為,焦點(diǎn)坐標(biāo)分別為(-1,0),(1,0)。
          (2)設(shè)KF1的中點(diǎn)為B(x, y),則點(diǎn)K(2x+1,2y),
          把K的坐標(biāo)代入橢圓中得,,
          ∴線段KF1的中點(diǎn)B的軌跡方程為
          (3)過(guò)原點(diǎn)的直線L與橢圓相交的兩點(diǎn)M,N關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng),
          設(shè),
          M,N,P在橢圓上,應(yīng)滿足橢圓方程,得,,
          ,
          故:的值與點(diǎn)P的位置無(wú)關(guān),同時(shí)與直線L無(wú)關(guān)。
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)F1、F2分別是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左右焦點(diǎn).
          (1)設(shè)橢圓C上點(diǎn)(
          3
          3
          2
          )
          到兩點(diǎn)F1、F2距離和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);
          (2)設(shè)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段KF1的中點(diǎn)B的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)F1,F(xiàn)2分別是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左右焦點(diǎn),若橢圓C上的一點(diǎn)A(1,
          3
          2
          )到F1,F(xiàn)2的距離之和為4.
          (1)求橢圓方程;
          (2)若M,N是橢圓C上兩個(gè)不同的點(diǎn),線段MN的垂直平分線與x軸交于點(diǎn)P,求證:|
          OP
          |<
          1
          2

          (3)若M,N是橢圓C上兩個(gè)不同的點(diǎn),Q是橢圓C上不同于M,N的任意一點(diǎn),若直線QM,QN的斜率分別為KQM•KQN.問(wèn):“點(diǎn)M,N關(guān)于原點(diǎn)對(duì)稱(chēng)”是KQM•KQN=-
          3
          4
          的什么條件?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)F1、F2分別是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左、右焦點(diǎn),P是C上的一個(gè)動(dòng)點(diǎn),且|PF1|+|PF2|=4,C的離心率為
          1
          2

          (Ⅰ)求C方程;
          (Ⅱ)是否存在過(guò)點(diǎn)F2且斜率存在的直線l與橢圓交于不同的兩點(diǎn)C、D,使得|F1C|=|F1D|.若存在,求直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)F1,F(xiàn)2分別是橢圓C:
          x2
          a2
          +
          x2
          b2
          =1(a>b>0)的焦點(diǎn),若橢圓C上存在點(diǎn)P,使線段PF1的垂直平分線過(guò)點(diǎn)F2,則橢圓離心率的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•肇慶二模)設(shè)F1,F(xiàn)2分別是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左右焦點(diǎn).
          (1)設(shè)橢圓C上的點(diǎn)(
          2
          2
          3
          2
          )
          到F1,F(xiàn)2兩點(diǎn)距離之和等于2
          2
          ,寫(xiě)出橢圓C的方程;
          (2)設(shè)過(guò)(1)中所得橢圓上的焦點(diǎn)F2且斜率為1的直線與其相交于A,B,求△ABF1的面積;
          (3)設(shè)點(diǎn)P是橢圓C 上的任意一點(diǎn),過(guò)原點(diǎn)的直線l與橢圓相交于M,N兩點(diǎn),當(dāng)直線PM,PN的斜率都存在,并記為kPN,kPN試探究kPN•kPN的值是否與點(diǎn)P及直線l有關(guān),并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案