日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設橢圓+=1的兩個焦點分別為F1、F2,P為橢圓上一點,且PF1⊥PF2,則||PF1|-|PF2||的值為(    )

          A.2             B.6              C.              D.

          A


          解析:

          |PF1|+|PF2|=6,(|PF2|+|PF2|)2=(|PF1)2+(|PF2|)2+2|PF1|·|PF2|=180,

          又PF1⊥PF2,∴|PF1|2+|PF2|2=4c2=4×(45-20)=100,

          ∴2|PF1|·|PF2|=80,

          (|PF1|-|PF2|)2=(|PF1|+|PF2|)2-4|PF1|·|PF2|=180-2×80=20,

          ∴||PF1|-|PF2||=2.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在直角坐標系xOy中,已知橢圓C:
          y2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率e=
          3
          2
          ,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
          直線與橢圓C相交M、N兩點,且|MN|=1.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設橢圓C的左頂點為A,下頂點為B,動點P滿足
          PA
          AB
          =m-4,(m∈R)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓C上.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          在直角坐標系xOy中,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率e=
          2
          2
          ,左右兩個焦分別為F1,F(xiàn)2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=2.
          (1)求橢圓C的方程;
          (2)設橢圓C的一個頂點為B(0,-b),是否存在直線l:y=x+m,使點B關于直線l 的對稱點落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的

          直線與橢圓相交M、N兩點,且|MN|=1.

          (Ⅰ) 求橢圓的方程;

          (Ⅱ) 設橢圓的左頂點為A,下頂點為B,動點P滿足,

          )試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓上.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的

          直線與橢圓相交M、N兩點,且|MN|=1.

          (Ⅰ) 求橢圓的方程;

          (Ⅱ) 設橢圓的左頂點為A,下頂點為B,動點P滿足

          )試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓上.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012-2013學年河南鄭州盛同學校高三4月模擬考試文科數(shù)學試卷(解析版) 題型:解答題

          設F1、F2分別為橢圓C: =1(a>b>0)的左、右兩個焦 點。(1)若橢圓C上的點A(1,)到F1、F2兩點的 距離之和等于4,寫出橢圓C的方程和焦點坐標;

          (2)設點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程.

           

          查看答案和解析>>

          同步練習冊答案