日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某校為選拔參加“央視猜燈謎大賽”的隊(duì)員,在校內(nèi)組織猜燈謎競賽.規(guī)定:第一階段知識測試成績不小于分的學(xué)生進(jìn)入第二階段比賽.現(xiàn)有名學(xué)生參加知識測試,并將所有測試成績繪制成如下所示的頻率分布直方圖.

          (1)估算這名學(xué)生測試成績的中位數(shù),并求進(jìn)入第二階段比賽的學(xué)生人數(shù);

          (2)將進(jìn)入第二階段的學(xué)生分成若干隊(duì)進(jìn)行比賽.現(xiàn)甲、乙兩隊(duì)在比賽中均已獲得分,進(jìn)入最后強(qiáng)答階段.搶答規(guī)則:搶到的隊(duì)每次需猜條謎語,猜對條得分,猜錯條扣分.根據(jù)經(jīng)驗(yàn),甲隊(duì)猜對每條謎語的概率均為,乙隊(duì)猜對每條謎語的概率均為,猜對第條的概率均為.若這兩條搶到答題的機(jī)會均等,您做為場外觀眾想支持這兩隊(duì)中的優(yōu)勝隊(duì),會把支持票投給哪隊(duì)?

          【答案】(1;(2)支持票投給甲隊(duì).

          【解析】試題分析:(1)利用頻率分布直方圖求中位數(shù),中位數(shù)左邊和右邊的長方形的面積和是相等的;(2)求隨機(jī)變量的分布列的主要步驟:一是明確隨機(jī)變量的取值,并確定隨機(jī)變量服從何種概率分布;二是求每一個隨機(jī)變量取值的概率,三是列成表格;(3)求解離散隨機(jī)變量分布列和方差,首先要理解問題的關(guān)鍵,其次要準(zhǔn)確無誤的找出隨機(jī)變量的所有可能值,計(jì)算出相對應(yīng)的概率,寫成隨機(jī)變量的分布列,正確運(yùn)用均值、方差公式進(jìn)行計(jì)算.

          試題解析:(1)設(shè)測試成績的中位數(shù)為,由頻率分布直方圖得,

          ,

          解得: 2

          測試成績中位數(shù)為

          進(jìn)入第二階段的學(xué)生人數(shù)為200×000300015×2018人. 4

          2)設(shè)最后搶答階段甲、乙兩隊(duì)猜對燈謎的條數(shù)分別為、,

          , 5

          6

          最后搶答階段甲隊(duì)得分的期望為8

          , ,

          , ,

          10

          最后搶答階段乙隊(duì)得分的期望為12

          ,

          支持票投給甲隊(duì).. 13

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱中,底面為矩形,平面平面===,=2,的中點(diǎn).

          (Ⅰ)求證:;

          (Ⅱ)求點(diǎn)到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)的部分圖像如圖所示,將的圖象向右平移個單位長度后得到函數(shù)的圖象.

          (1)求函數(shù)的解析式;

          (2)在中,角A,B,C滿足,且其外接圓的半徑R=2,求的面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】現(xiàn)在人們都注重鍛煉身體,騎車或步行上下班的人越來越多,某學(xué)校甲、乙兩名教師每天可采用步行、騎車、開車三種方式上下班,步行到學(xué)校所用時間為1小時,騎車到學(xué)校所用時間為0.5小時,開車到學(xué)校所用時間為0.1小時,甲、乙兩人上下班方式互不影響.設(shè)甲、乙步行的概率分、,騎車的概率分別為、.

          (1) 求甲、乙兩人到學(xué)校所用時間相同的概率;

          (2) 設(shè)甲、乙兩人到學(xué)校所用時間和為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)列{an}和{bn}的每一項(xiàng)都是正數(shù),且a1=8,b1=16,且an , bn , an+1成等差數(shù)列,bn , an+1 , bn+1成等比數(shù)列.
          (1)求a2 , b2的值;
          (2)求數(shù)列{an},{bn}的通項(xiàng)公式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,已知圓Ox2y2=4,直線l:12x-5yc=0(其中c為常數(shù)).下列有關(guān)直線l與圓O的命題中正確命題的序號是________

          ①當(dāng)c=0時,圓O上有四個不同的點(diǎn)到直線l的距離為1;

          ②若圓O上有四個不同的點(diǎn)到直線l的距離為1,則-13<c<13;

          ③若圓O上恰有三個不同的點(diǎn)到直線l的距離為1,則c=13;

          ④若圓O上恰有兩個不同的點(diǎn)到直線l的距離為1,則13<c<39;

          ⑤當(dāng)c=±39時,圓O上只有一個點(diǎn)到直線l的距離為1.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】有以下命題:
          ①對任意的α∈R都有sin3α=3sinα﹣4sin3α成立;
          ②對任意的△ABC都有等式a=bcosA+ccosB成立;
          ③滿足“三邊是連續(xù)的三個正整數(shù)且最大角是最小的2倍”的三角形存在且唯一;
          ④若A,B是鈍角△ABC的二銳角,則sinA+sinB<cosA+cosB.
          其中正確的命題的個數(shù)是(
          A.4
          B.3
          C.2
          D.1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的中心為原點(diǎn),離心率,其中一個焦點(diǎn)的坐標(biāo)為

          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

          (Ⅱ)當(dāng)點(diǎn)在橢圓上運(yùn)動時,設(shè)動點(diǎn)的運(yùn)動軌跡為若點(diǎn)滿足: 其中上的點(diǎn).直線的斜率之積為,試說明:是否存在兩個定點(diǎn),使得為定值?若存在,求的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了 1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

          日 期

          1月10日

          2月10日

          3月10日

          4月10日

          5月10日

          6月10日

          晝夜溫差x(°C)

          10

          11

          13

          12

          8

          6

          就診人數(shù)y(個)

          22

          25

          29

          26

          16

          12

          該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

          (1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;

          (2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

          (3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

          (參考:用最小二乘法求線性回歸方程系數(shù)公式 ,

          查看答案和解析>>

          同步練習(xí)冊答案