日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          (1)若函數(shù)在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;

          (3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

          【答案】(1) ;(2) .

          【解析】試題分析:(1)由題意得導(dǎo)函數(shù)在其定義域內(nèi)恒非負(fù),再根據(jù)二次方程恒成立條件得實(shí)數(shù)的取值范圍;(2)將不等式有解問題,利用參變分離法轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問題,再利用導(dǎo)數(shù)求對(duì)應(yīng)函數(shù)最值,即得實(shí)數(shù)的取值范圍.

          試題解析:(1), ,

          因?yàn)楹瘮?shù)在其定義域內(nèi)為增函數(shù),

          所以 恒成立,

          當(dāng)時(shí),顯然不成立;

          當(dāng)時(shí), ,要滿足, 時(shí)恒成立,則,

          .

          (2)設(shè)函數(shù) ,

          則原問題轉(zhuǎn)化為在上至少存在一點(diǎn),使得,即.

          時(shí),

          ,∴, ,則,不符合條件;

          時(shí), ,

          ,可知,

          單調(diào)遞增, ,整理得.

          綜上所述, .

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列是以2為首項(xiàng)的等差數(shù)列,且成等比數(shù)列.

          (Ⅰ)求數(shù)列的通項(xiàng)公式及前項(xiàng)和;

          ,求數(shù)列的前項(xiàng)之和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)﹣f(x)=2x+5;函數(shù)g(x)=ax(a>0且a≠1)
          (1)求f(x)的解析式;
          (2)若g(2)= ,且g[f(x)]≥k對(duì)x∈[﹣1,1]恒成立,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn= (an﹣1)(a為常數(shù),且a≠0,a≠1);
          (1)求{an}的通項(xiàng)公式;
          (2)設(shè)bn= +1,若數(shù)列{bn}為等比數(shù)列,求a的值;
          (3)若數(shù)列{bn}是(2)中的等比數(shù)列,數(shù)列cn=(n﹣1)bn , 求數(shù)列{cn}的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在等差數(shù)列中, ,其前項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù), ,且, .

          (1)求數(shù)列的通項(xiàng)公式;

          (2)令,設(shè)數(shù)列的前項(xiàng)和為,求)的最大值與最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          已知曲線的參數(shù)方程為為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線(1)求曲線的普通方程;(2)若點(diǎn)在曲線上,點(diǎn) ,當(dāng)點(diǎn)在曲線上運(yùn)動(dòng)時(shí),求中點(diǎn)的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=a﹣ ,
          (1)若x∈[ ,+∞),①判斷函數(shù)g(x)=f(x)﹣2x的單調(diào)性并加以證明;②如果f(x)≤2x恒成立,求a的取值范圍;
          (2)若總存在m,n使得當(dāng)x∈[m,n]時(shí),恰有f(x)∈[2m,2n],求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是(
          A.
          B.y=ex
          C.y=lg|x|
          D.y=﹣x2+1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對(duì)于兩個(gè)定義域相同的函數(shù)f(x),g(x),若存在實(shí)數(shù)m、n使h(x)=mf(x)+ng(x),則稱函數(shù)h(x)是由“基函數(shù)f(x),g(x)”生成的.
          (1)若f(x)=x2+3x和個(gè)g(x)=3x+4生成一個(gè)偶函數(shù)h(x),求h(2)的值;
          (2)若h(x)=2x2+3x﹣1由函數(shù)f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范圍;
          (3)利用“基函數(shù)f(x)=log4(4x+1),g(x)=x﹣1”生成一個(gè)函數(shù)h(x),使之滿足下列件:①是偶函數(shù);②有最小值1;求函數(shù)h(x)的解析式并進(jìn)一步研究該函數(shù)的單調(diào)性(無需證明).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案