【題目】有關(guān)獨立性檢驗的四個命題,其中正確的是( )
A.兩個變量的2×2列聯(lián)表中,對角線上數(shù)據(jù)的乘積相差越大,說明兩個變量有關(guān)系成立的可能性就越大
B.對分類變量X與Y的隨機變量的觀測值k來說,k越小,“X與Y有關(guān)系”的可信程度越小
C.從獨立性檢驗可知:有95%的把握認為禿頂與患心臟病有關(guān),我們說某人禿頂,那么他有95%的可能患有心臟病
D.從獨立性檢驗可知:有99%的把握認為吸煙與患肺癌有關(guān),是指在犯錯誤的概率不超過1%的前提下認為吸煙與患肺癌有關(guān)
【答案】ABD
【解析】
觀測值越大,兩個變量有關(guān)系的可能性越大,選項
正確;根據(jù)獨立性檢驗,
觀測值越小,兩個有關(guān)系的可信度越低,選項
正確;獨立性檢驗的結(jié)論適合于群體的可能性,不能認為是必然情況,選項
不正確;根據(jù)獨立性的解釋,選項
正確.
選項,兩個變量的2×2列聯(lián)表中,對角線上數(shù)據(jù)的乘積相差越大,
則觀測值越大,兩個變量有關(guān)系的可能性越大,所以選項
正確;
選項,根據(jù)
的觀測值
越小,原假設(shè)“X與Y沒關(guān)系”成立的可能性越大,
則“X與Y有關(guān)系”的可信度越小,所以選項正確;
選項,從獨立性檢驗可知:有95%的把握認為禿頂與患心臟病有關(guān),
不表示某人禿頂他有95%的可能患有心臟病,所以選項不正確;
選項,從獨立性檢驗可知:有99%的把握認為吸煙與患肺癌有關(guān),
是指在犯錯誤的概率不超過1%的前提下認為吸煙與患肺癌有關(guān),
是獨立性檢驗的解釋,所以選項正確.
故選:ABD.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)在圓中有這樣的結(jié)論:對圓上任意一點
,設(shè)
、
是圓和
軸的兩交點,且直線
和
的斜率都存在,則它們的斜率之積為定值-1.試將該結(jié)論類比到橢圓
,并給出證明.
(2)已知橢圓,
,
,設(shè)直線
與橢圓
交于不同于
、
的兩點
、
,記直線
、
、
的斜率分別為
、
、
.
(。┤糁本過定點
,則
是否為定值.若是,請證明;若不是,請說明理由.
(ⅱ)若,求所有整數(shù)
,使得直線
變化時,總有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=4,AD=2,點E是DC的中點,將△ADE沿AE折起,使平面ADE⊥平面ABCE,連結(jié)DB、DC、EB.
(1)求證:平面ADE⊥平面BDE;
(2)求AD與平面BDC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將四個不同的小球放入三個分別標有1、2、3號的盒子中,不允許有空盒子的放法有多少種?下列結(jié)論正確的有( ).
A.B.
C.
D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為
(其中
為參數(shù)),以原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)若點在直線
上,且
,求直線
的斜率;
(2)若,求曲線
上的點到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】丑橘是人們?nèi)粘I钪谐R姷臓I養(yǎng)型水果.某地水果批發(fā)市場銷售來自5個不同產(chǎn)地的丑橘,各產(chǎn)地的包裝規(guī)格相同,它們的批發(fā)價格(元/箱)和市場份額如下:
產(chǎn)地 | |||||
批發(fā)價格 | 150 | 160 | 140 | 155 | 170 |
市場份額 |
市場份額亦稱“市場占有率”.指某一產(chǎn)品的銷售量在市場同類產(chǎn)品中所占比重.
(1)從該地批發(fā)市場銷售的丑橘中隨機抽取一箱,估計該箱丑橘價格低于160元的概率;
(2)按市場份額進行分層抽樣,隨機抽取20箱丑橘進行檢驗,①從產(chǎn)地,
共抽取
箱,求
的值;②從這
箱中隨機抽取三箱進行等級檢驗,隨機變量
表示來自產(chǎn)地
的箱數(shù),求
的分布列和數(shù)學(xué)期望.
(3)產(chǎn)地的丑橘明年將進入該地市場,定價160元/箱,并占有一定市場份額,原有五個產(chǎn)地的丑橘價格不變,所占市場份額之比不變(不考慮其他因素).設(shè)今年丑橘的平均批發(fā)價為每箱
元,明年丑橘的平均批發(fā)價為每箱
元,比較
,
的大小.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】受傳統(tǒng)觀念的影響,中國家庭教育過程中對子女教育的投入不遺余力,基礎(chǔ)教育消費一直是中國家庭教育的重頭戲,升學(xué)壓力的逐漸增大,特別是對于升入重點學(xué)校的重視,導(dǎo)致很多家庭教育支出增長較快,下面是某機構(gòu)隨機抽樣調(diào)查某二線城市2012-2018年的家庭教育支出的折線圖.
(附:年份代碼1-7分別對應(yīng)的年份是2012-2018)
(1)從圖中的折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請求出相關(guān)系數(shù)r(精確到0.001),并指出是哪一層次的相關(guān)性?(相關(guān)系數(shù),相關(guān)性很強;
,相關(guān)性一般;
,相關(guān)性較弱).
(2)建立y關(guān)于t的回歸方程;
(3)若2019年該地區(qū)家庭總支出為10萬元,預(yù)測家庭教育支出約為多少萬元?
附注:參考數(shù)據(jù):,
,
,
,
.
參考公式:,回歸方程
,
其中,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龍)、巳(蛇)、午(馬)、未(羊)、申(猴)、酉(雞)、戌(狗)、亥(豬),每一個人的出生年份對應(yīng)了十二種動物中的一種,即自己的屬相.現(xiàn)有印著十二生肖圖案的毛絨娃娃各一個,小張同學(xué)的屬相為馬,小李同學(xué)的屬相為羊,現(xiàn)在這兩位同學(xué)從這十二個毛絨娃娃中各隨機取一個(不放回),則這兩位同學(xué)都拿到自己屬相的毛絨娃娃的概率是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有兩臺不同機器和
生產(chǎn)同一種產(chǎn)品各
萬件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機抽取
件,進行品質(zhì)鑒定,鑒定成績的莖葉圖如圖所示:
該產(chǎn)品的質(zhì)量評價標準規(guī)定:鑒定成績達到的產(chǎn)品,質(zhì)量等級為優(yōu)秀;鑒定成績達到
的產(chǎn)品,質(zhì)量等級為良好;鑒定成績達到
的產(chǎn)品,質(zhì)量等級為合格.將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.
(1)完成下列列聯(lián)表,以產(chǎn)品等級是否達到良好以上(含良好)為判斷依據(jù),判斷能不能在誤差不超過
的情況下,認為
機器生產(chǎn)的產(chǎn)品比
機器生產(chǎn)的產(chǎn)品好;
|
| 合計 | |
良好以上(含良好) | |||
合格 | |||
合計 |
(和
生產(chǎn)的產(chǎn)品中各隨機抽取
件,求
件產(chǎn)品中
機器生產(chǎn)的優(yōu)等品的數(shù)量多于
機器生產(chǎn)的優(yōu)等品的數(shù)量的概率;
(3)已知優(yōu)秀等級產(chǎn)品的利潤為元/件,良好等級產(chǎn)品的利潤為
元/件,合格等級產(chǎn)品的利潤為
元/件,
機器每生產(chǎn)
萬件的成本為
萬元,
機器每生產(chǎn)
萬件的成本為
萬元;該工廠決定:按樣本數(shù)據(jù)測算,若收益之差不超過
萬元,則仍然保留原來的兩臺機器.你認為該工廠會仍然保留原來的兩臺機器嗎?
附:1.獨立性檢驗計算公式:.
2.臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com