日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線C:y=x2+4x+
          2
          7
          ,過C上一點(diǎn)M,且與M處的切線垂直的直線稱為C在點(diǎn)M的法線.
          (Ⅰ)若C在點(diǎn)M的法線的斜率為-
          1
          2
          ,求點(diǎn)M的坐標(biāo)(x0,y0;
          (Ⅱ)設(shè)P(-2,a)為C對(duì)稱軸上的一點(diǎn),在C上是否存在點(diǎn),使得C在該點(diǎn)的法線通過點(diǎn)P?若有,求出這些點(diǎn),以及C在這些點(diǎn)的法線方程;若沒有,請(qǐng)說明理由.
          分析:(1)由切線和法線垂直,則其斜率之積等于-1,可得M處的切線的斜率k=2,再根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合已知即可求得點(diǎn)M的坐標(biāo);
          (2)設(shè)M(x0,y0為C上一點(diǎn),分x0=-2和x0≠-2兩種情況討論,結(jié)合題意和導(dǎo)數(shù)的幾何意義可得到等量關(guān)系(x0+2)2=a,然后再分a>0,a=0,a<0三種情況分析,即可求解.
          解答:解:(Ⅰ)由題意知,M處的切線的斜率k=
          -1
          -
          1
          2
          =2,
          ∵y′=2x+4,
          ∴2x0+4=2,解得x0=-1,
          將x0=-1代入y=x2+4x+
          7
          2
          中,解得y0=
          1
          2
          ,
          ∴M(-1,
          1
          2
          );
          (Ⅱ)設(shè) M(x0,y0為C上一點(diǎn),
          ①若x0=-2,則C上點(diǎn)M(-2,-
          1
          2
          )處的切線斜率 k=0,過點(diǎn)M(-2,-
          1
          2
          ) 的法線方程為x=-2,此法線過點(diǎn)P(-2,a);
          ②若 x0≠-2,則過點(diǎn) M(x0,y0的法線方程為:y-y0=-
          1
          2x0+4
          (x-x0) ①
          若法線過P(-2,a),則 a-y0=-
          1
          2x0+4
          (-2-x0),即(x0+2)2=a  ②
          若a>0,則x0=-2±
          a
          ,從而y0=
          2a-1
          2
          ,將上式代入①,
          化簡(jiǎn)得:x+2
          a
          y+2-2a
          a
          =0或x-2
          a
          y+2+2a
          a
          =0,
          若a=0與x0≠-2矛盾,若a<0,則②式無解.
          綜上,當(dāng)a>0時(shí),在C上有三個(gè)點(diǎn)(-2+
          a
          ,
          2a-1
          2
          ),(-2-
          a
          ,
          2a-1
          2
          )及
          (-2,-
          1
          2
          ),在這三點(diǎn)的法線過點(diǎn)P(-2,a),其方程分別為:
          x+2
          a
          y+2-2a
          a
          =0,x-2
          a
          y+2+2a
          a
          =0,x=-2.
          當(dāng)a≤0時(shí),在C上有一個(gè)點(diǎn)(-2,-
          1
          2
          ),在這點(diǎn)的法線過點(diǎn)P(-2,a),其方程為:x=-2.
          點(diǎn)評(píng):本題通過曲線的切線和法線問題,考查了導(dǎo)數(shù)的運(yùn)算和幾何意義,同時(shí)綜合運(yùn)用了分類討論的數(shù)學(xué)思想,難度較大.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖1,已知拋物線C:y=3x2(x≥0)與直線x=a.直線x=b(其中0≤a≤b)及x軸圍成的曲邊梯形(陰影部分)的面積可以由公式S=b3-a3來計(jì)算,則如圖2,過拋物線C:y=3x2(x≥0)上一點(diǎn)A(點(diǎn)A在y軸和直線x=2之間)的切線為l,S1是拋物線y=3x2與切線l及直線y=0所圍成圖形的面積,S2是拋物線y=3x2與切線l及直線x=2所圍成圖形的面積,求面積s1+s2的最小值.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C:y=2x2上的點(diǎn)A(-1,2),直線l1過點(diǎn)A且與拋物線相切.直線l2:x=a(a>-1)交拋物線于點(diǎn)B,交直線l1于點(diǎn)D,記△ABD的面積為S1,拋物線和直線l1,l2所圍成的圖形面積為S2,則S1:S2=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C:y=ax2(a>0)的焦點(diǎn)到準(zhǔn)線的距離為
          1
          4
          ,且C上的兩點(diǎn)A(x1,y1),B(x2,y2)關(guān)于直線y=x+m對(duì)稱,并且x1x2=-
          1
          2
          ,那么m=
          3
          2
          3
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(大綱卷解析版) 題型:解答題

          已知拋物線C:y=(x+1)2與圓M:(x-1)2+()2=r2(r>0)有一個(gè)公共點(diǎn),且在A處兩曲線的切線為同一直線l.

          (Ⅰ)求r;

          (Ⅱ)設(shè)m、n是異于l且與C及M都相切的兩條直線,m、n的交點(diǎn)為D,求D到l的距離。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【2012高考真題全國卷理21】(本小題滿分12分)(注意:在試卷上作答無效

          已知拋物線C:y=(x+1)2與圓M:(x-1)2+()2=r2(r>0)有一個(gè)公共點(diǎn),且在A處兩曲線的切線為同一直線l.

          (Ⅰ)求r;

          (Ⅱ)設(shè)m、n是異于l且與C及M都相切的兩條直線,m、n的交點(diǎn)為D,求D到l的距離.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案