已知△ABC中, 點A,B的坐標(biāo)分別為A(-,0),B(
,0)點C在x軸上方.
(Ⅰ)若點C坐標(biāo)為(,1),求以A,B為焦點且經(jīng)過點C的橢圓的方程:
(Ⅱ)過點P(m,0)作傾斜角為的直線l交(1)中曲線于M,N兩點,若點Q(1,0)恰在以線段MN為直徑的圓上,求實數(shù)m的值.
(Ⅰ)橢圓方程為 ;(Ⅱ)
.
解析試題分析:(Ⅰ)由橢圓定義易求;(Ⅱ)此題是直線與橢圓位置關(guān)系的問題,可采用設(shè)而不求的解題方法,設(shè),由已知可得直線
的方程為
,代入橢圓方程,得到關(guān)于
的一元二次方程,注意到點P(m,0)不一定在橢圓內(nèi)部,需對方程是否有解討論, 點
恰在以線段
為直徑的圓上,說明
,它們的斜率互為負(fù)倒數(shù),利用根與系數(shù)關(guān)系,建立方程,從而求出實數(shù)m的值.此題易錯點,不知對方程是否有解討論.
試題解析:(Ⅰ)設(shè)橢圓方程,
,
橢圓方程為 ;
(Ⅱ)直線的方程為
,令
,聯(lián)立方程得:
,
,
若恰在以線段
為直徑的圓上,則
,即
,
,解得
,
,
符合題意
考點:橢圓的方程,直線與橢圓的位置關(guān)系,考查學(xué)生的運算能力、化簡能力以及數(shù)形結(jié)合的能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,F(xiàn)1,F(xiàn)2分別是橢圓C:+
=1(a>b>0)的左、右焦點,A是橢圓C的頂點,B是直線AF2與橢圓C的另一個交點,∠F1AF2=60°
(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40,求a,b的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的焦點為F2,點F1與F2關(guān)于坐標(biāo)原點對稱,以F1,F2為焦點的橢圓C過點
.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點,過點F2作直線
與橢圓C交于A,B兩點,且
,若
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
知橢圓的離心率為
,定點
,橢圓短軸的端點是
,且
.
(1)求橢圓的方程;
(2)設(shè)過點且斜率不為0的直線交橢圓
于
兩點.試問
軸上是否存在異于
的定點
,使
平分
?若存在,求出點
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知經(jīng)過點A(-4,0)的動直線l與拋物線G:相交于B、C,當(dāng)直線l的斜率是
時,
.
(Ⅰ)求拋物線G的方程;
(Ⅱ)設(shè)線段BC的垂直平分線在y軸上的截距為b,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某跳水運動員在一次跳水訓(xùn)練時的跳水曲線為如圖所示的拋物線一段,已知跳水板長為2m,跳水板距水面
的高
為3m,
=5m,
=6m,為安全和空中姿態(tài)優(yōu)美,訓(xùn)練時跳水曲線應(yīng)在離起跳點
m(
)時達到距水面最大高度4m,規(guī)定:以
為橫軸,
為縱軸建立直角坐標(biāo)系.
(1)當(dāng)=1時,求跳水曲線所在的拋物線方程;
(2)若跳水運動員在區(qū)域內(nèi)入水時才能達到壓水花的訓(xùn)練要求,求達到壓水花的訓(xùn)練要求時
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓的左頂點為
,
是橢圓
上異于點
的任意一點,點
與點
關(guān)于點
對稱.
(1)若點的坐標(biāo)為
,求
的值;
(2)若橢圓上存在點
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的左焦點為
,離心率為
,過點
且與
軸垂直的直線被橢圓截得的線段長為
.
(1) 求橢圓方程.
(2) 過點的直線
與橢圓交于不同的兩點
,當(dāng)
面積最大時,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C: (a>b>0)的兩個焦點和短軸的兩個端點都在圓
上.
(I)求橢圓C的方程;
(II)若斜率為k的直線過點M(2,0),且與橢圓C相交于A, B兩點.試探討k為何值時,三角形OAB為直角三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com