日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)G為△ABC的重心,過G作直線l分別交線段AB,AC(不與端點(diǎn)重合)于P,Q.若
          (1)求 + 的值;
          (2)求λμ的取值范圍.

          【答案】
          (1)解:連結(jié)AG并延長(zhǎng)交BC于M,則M是BC的中點(diǎn),則

          , ,

          = , =( +

          ∵P,G,Q三點(diǎn)共線,故存在實(shí)數(shù)t,使 =t ,即( + =

          ,兩式相除消去t得1﹣3λ=﹣ ,即


          (2)解:∵1﹣3λ=﹣ ,∴ ,

          ∵λ,μ∈(0,1),∴ ,解得 .∴

          ∴λμ= =

          ∴當(dāng) 時(shí),λμ取得最小值 ,當(dāng) 或2時(shí),λμ取得最大值

          ∴λμ的取值范圍是[ ).


          【解析】(1)使用 表示出 ,根據(jù)P,Q,G三點(diǎn)共線得出λ,μ的關(guān)系;(2)用λ表示出μ,令λ,μ∈(0,1)得出λ的范圍,則λμ可表示為關(guān)于λ的函數(shù),求出該函數(shù)的最值即可.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平面向量的基本定理及其意義的相關(guān)知識(shí),掌握如果、是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù),使

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合A={x|1<x≤5},集合B={ >0}.
          (1)求A∩B;
          (2)若集合C={x|a+1≤x≤4a﹣3},且C∪A=A,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)= x·ex, , ,若對(duì)任意的,都有成立,則實(shí)數(shù)k的取值范圍是

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.

          (1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到理科題的概率;

          (2)該考生答對(duì)理科題的概率均為,若每題答對(duì)得10分,否則得零分,現(xiàn)該生抽到3道理科題,求其所得總分的分布列與數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在圓柱中,A,B,CD是底面圓的四等分點(diǎn),O是圓心,A1A,B1B,C1C與底面ABCD垂直,底面圓的直徑等于圓柱的高.

          (Ⅰ)證明:BCAB1;

          (Ⅱ)(ⅰ)求二面角A1 - BB1 - D的大。

          (ⅱ)求異面直線AB1BD所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)存在兩個(gè)極值點(diǎn).

          (Ⅰ)求實(shí)數(shù)a的取值范圍;

          (Ⅱ)設(shè)分別是的兩個(gè)極值點(diǎn)且,證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4—4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為t為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2

          (Ⅰ)求曲線C1C2的直角坐標(biāo)方程,并分別指出其曲線類型;

          (Ⅱ)試判斷:曲線C1C2是否有公共點(diǎn)?如果有,說明公共點(diǎn)的個(gè)數(shù);如果沒有,請(qǐng)說明理由;

          (Ⅲ)設(shè)是曲線C1上任意一點(diǎn),請(qǐng)直接寫出a + 2b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,橢圓C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為(t為參數(shù)).

          (Ⅰ)寫出橢圓C的普通方程和直線l的傾斜角;

          (Ⅱ)若點(diǎn)P(1,2),設(shè)直線l與橢圓C相交于A,B兩點(diǎn),求|PA|·|PB|的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+)= ,曲線C的參數(shù)方程為 (α為參數(shù)).

          (1)求直線l的普通方程;

          (2)若P是曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l的最大距離及點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案