【題目】已知函數(shù)(
)
(1)討論函數(shù)在
上的單調(diào)性;
(2)若且
存在兩個(gè)極值點(diǎn),記作
,
,若
,求a的取值范圍;
(3)求證:當(dāng)時(shí),
(其中e為自然對(duì)數(shù)的底數(shù))
【答案】(1)答案不唯一,見解析;(2);(3)見解析
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),通過討論的范圍求出函數(shù)的單調(diào)區(qū)間即可;
(2)求出,
,得到
的解析式,問題轉(zhuǎn)化為
,令
,
,所以
,令
,根據(jù)函數(shù)的單調(diào)性判斷即可;
(3)問題轉(zhuǎn)化為證明,即證
,設(shè)
,根據(jù)函數(shù)的單調(diào)性證明即可.
解:(1)
(※)
當(dāng)時(shí),
,
,函數(shù)
在
上是增函數(shù)
當(dāng)時(shí),由
得
,解得
(舍去)
所以當(dāng)時(shí),
,從而
,函數(shù)
在
上是減函數(shù);
當(dāng)時(shí),
,從而
,函數(shù)
在
上是增函數(shù)
綜上,當(dāng)時(shí),函數(shù)
在
上是增函數(shù);
當(dāng)時(shí),函數(shù)
在
上是減函數(shù),在
上是增函數(shù)
(2)由(1)知,當(dāng)時(shí),
,函數(shù)
無極值點(diǎn)
若存在兩個(gè)極值點(diǎn),又由
為正數(shù)必有
,由(1)極值點(diǎn)為
,
依題意即
化為
,得
所以的取值范圍是
由(※)式得
不等式化為
令所以
當(dāng)時(shí),
,
,
,所以
,不合題意
當(dāng)時(shí),
,
所以在
上是減函數(shù),所以
,適合題意,即
綜上,a的取值范圍是.
(3)當(dāng)時(shí),
不等式可化為
,即證
.
設(shè),則
在
上,
,
是減函數(shù);在
上,
,
是增函數(shù),所以
,
設(shè),則
是減函數(shù),所以
,
所以,即
所以當(dāng)
時(shí),不等式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某游樂場過山車軌道在同一豎直鋼架平面內(nèi),如圖所示,矩形的長
為130米,寬
為120米,圓弧形軌道所在圓的圓心為0,圓O與
,
,
分別相切于點(diǎn)A,D,CT為
的中點(diǎn).現(xiàn)欲設(shè)計(jì)過山車軌道,軌道由五段連接而成:出發(fā)點(diǎn)N在線段
上(不含端點(diǎn),游客從點(diǎn)Q處乘升降電梯至點(diǎn)N),軌道第一段
與圓O相切于點(diǎn)M,再沿著圓孤軌道
到達(dá)最高點(diǎn)A,然后在點(diǎn)A處沿垂直軌道急速下降至點(diǎn)O處,接著沿直線軌道
滑行至地面點(diǎn)G處(設(shè)計(jì)要求M,O,G三點(diǎn)共線),最后通過制動(dòng)裝置減速沿水平軌道
滑行到達(dá)終點(diǎn)R記
為
,軌道總長度為l米.
(1)試將l表示為的函數(shù)
,并寫出
的取值范圍;
(2)求l最小時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中《方田》章有弧田面積計(jì)算問題,計(jì)算術(shù)曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面積計(jì)算公式為:弧田面積(弦乘矢+矢乘矢),弧田是由圓。ê喎Q為弧田的弧)和以圓弧的端點(diǎn)為端點(diǎn)的線段(簡稱 (弧田的弦)圍成的平面圖形,公式中“弦”指的是弧田的弦長,“矢”等于弧田的弧所在圓的半徑與圓心到弧田的弦的距離之差.現(xiàn)有一弧田,其弦長
等于
,其弧所在圓為圓
,若用上述弧田面積計(jì)算公式計(jì)算得該弧田的面積為
,則
( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x﹣3|+|x+2|
(1)求不等式f(x)≤5的解集;
(2)若關(guān)于x的不等式f(x)≤a﹣|x|在區(qū)間[﹣1,2]上恒成立,求實(shí)數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某工廠每天固定成本是4萬元,每生產(chǎn)一件產(chǎn)品成本增加100元,工廠每件產(chǎn)品的出廠價(jià)定為元時(shí),生產(chǎn)
件產(chǎn)品的銷售收入是
(元),
為每天生產(chǎn)
件產(chǎn)品的平均利潤(平均利潤=總利潤/總產(chǎn)量).銷售商從工廠每件
元進(jìn)貨后又以每件
元銷售,
,其中
為最高限價(jià)
,
為銷售樂觀系數(shù),據(jù)市場調(diào)查,
是由當(dāng)
是
,
的比例中項(xiàng)時(shí)來確定.
(1)每天生產(chǎn)量為多少時(shí),平均利潤
取得最大值?并求
的最大值;
(2)求樂觀系數(shù)的值;
(3)若,當(dāng)廠家平均利潤最大時(shí),求
與
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠商調(diào)查甲乙兩種不同型號(hào)汽車在10個(gè)不同地區(qū)賣場的銷售量(單位:臺(tái)),并根據(jù)這10個(gè)賣場的銷售情況,得到如圖所示的莖葉圖,為了鼓勵(lì)賣場,在同型號(hào)汽車的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號(hào)的“星級(jí)賣場”.
(Ⅰ)求在這10個(gè)賣場中,甲型號(hào)汽車的“星級(jí)賣場”的個(gè)數(shù);
(Ⅱ)若在這10個(gè)賣場中,乙型號(hào)汽車銷售量的平均數(shù)為26.7,求的概率;
(Ⅲ)若,記乙型號(hào)汽車銷售量的方差為
,根據(jù)莖葉圖推斷
為何值時(shí),
達(dá)到最小值(只寫出結(jié)論).
注:方差,其中
是
,
,…,
的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,
,
,
為
的中點(diǎn),點(diǎn)
在平面
內(nèi)的射影在線段
上.
(1)求證:;
(2)若是正三角形,求三棱柱
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
,曲線
的極坐標(biāo)方程為
.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)曲線交于點(diǎn)
,曲線
與
軸交于點(diǎn)
,求線段
的中點(diǎn)到點(diǎn)
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為:,經(jīng)過點(diǎn)
,傾斜角為
的直線l與曲線C交于A,B兩點(diǎn)
(I)求曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(Ⅱ)求的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com