日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          不等式(x2-2)log2x>0的解集是(    )

          A.(0,1)∪(,+∞)                     B.(-,1)∪(,+∞)

          C.(,+∞)                               D.(-,)

          解析:原不等式等價于

          答案:A

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          設函數f(x)=x2+x-l,g(x)=ebx,其中P為自然對數的底.
          (1)當b=-1時,求函數F(x)=f(x)•g(x)的極大、極小值;
          (2)當b=-1時,求證:函數G(x)=f(x)+g(x)有且只有一個零點;
          (3)若不等式g(x)≥ex對?x>0恒成立,求實數b的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          24、(附加題-選做題)(不等式證明選講)設f(x)=x2-x+l,實數a滿足|x-a|<l,求證:|f (x)-f (a)|<2(|a|+1).

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          在平面直角坐標系中,已知O為坐標原點,點A的坐標為(a,b),點B的坐標為(cosωx,sinωx),其中a2+b2≠0且ω>0.設f(x)=
          OA
          OB

          (1)若a=
          3
          ,b=1,ω=2,求方程f(x)=1在區(qū)間[0,2π]內的解集;
          (2)若點A是過點(-1,1)且法向量為
          n
          =(-1,1)
          的直線l上的動點.當x∈R時,設函數f(x)的值域為集合M,不等式x2+mx<0的解集為集合P.若P⊆M恒成立,求實數m的最大值;
          (3)根據本題條件我們可以知道,函數f(x)的性質取決于變量a、b和ω的值.當x∈R時,試寫出一個條件,使得函數f(x)滿足“圖象關于點(
          π
          3
          ,0)
          對稱,且在x=
          π
          6
          處f(x)取得最小值”.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (1)選修4-4:矩陣與變換
          已知曲線C1:y=
          1
          x
          繞原點逆時針旋轉45°后可得到曲線C2:y2-x2=2,
          (I)求由曲線C1變換到曲線C2對應的矩陣M1;    
          (II)若矩陣M2=
          20
          03
          ,求曲線C1依次經過矩陣M1,M2對應的變換T1,T2變換后得到的曲線方程.
          (2)選修4-4:坐標系與參數方程
          已知直線l的極坐標方程是ρcosθ+ρsinθ-1=0.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,在曲線C:
          x=-1+cosθ
          y=sinθ
          (θ為參數)上求一點,使它到直線l的距離最小,并求出該點坐標和最小距離.
          (3)(選修4-5:不等式選講)
          將12cm長的細鐵線截成三條長度分別為a、b、c的線段,
          (I)求以a、b、c為長、寬、高的長方體的體積的最大值;
          (II)若這三條線段分別圍成三個正三角形,求這三個正三角形面積和的最小值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          6.若不等式x2+ax+l≥0對一切x∈(0,]成立,則a的最小值為

             A.0              B.-2           C.-       D.-3

          查看答案和解析>>

          同步練習冊答案