日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】中國式過馬路存在很大的交通安全隱患,某調(diào)查機(jī)構(gòu)為了解路人對中國式過馬路的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如圖的列聯(lián)表.已知在這30人中隨機(jī)抽取1人抽到反感中國式過馬路的路人的概率是

          1)求列聯(lián)表中的,的值;

          男性

          女性

          合計(jì)

          反感

          10

          不反感

          8

          合計(jì)

          30

          2)根據(jù)列聯(lián)表中的數(shù)據(jù),判斷是否有95%把握認(rèn)為反感中國式過馬路與性別有關(guān)?

          臨界值表:

          0.50

          0.40

          0.25

          0.15

          0.10

          0.05

          0.025

          0.010

          0.455

          0.708

          1.323

          2.072

          2.706

          3.841

          5.024

          6.635

          參考公式:

          【答案】1;(2)沒有95%把握認(rèn)為反感中國式過馬路與性別有關(guān).

          【解析】

          1)由古典概型的概率求得參數(shù),再由列聯(lián)表中總合計(jì)人數(shù)求得;

          2)由獨(dú)立性檢驗(yàn)中觀測值計(jì)算公式計(jì)算,再查表與3.841比較即可判定.

          1)由在這30人中隨機(jī)抽取1人抽到反感中國式過馬路的路人的概率是,即:,解得,又,解得

          2)填寫列聯(lián)表得

          男性

          女性

          合計(jì)

          反感

          10

          不反感

          8

          合計(jì)

          30

          求得

          所以,沒有95%把握認(rèn)為反感中國式過馬路與性別有關(guān).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中央政府為了應(yīng)對因人口老齡化而造成的勞動(dòng)力短缺等問題,擬定出臺“延遲退休年齡政策”.為了了解人們]對“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在1565歲的人群中隨機(jī)調(diào)查100人,調(diào)査數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:

          年齡

          支持“延遲退休”的人數(shù)

          15

          5

          15

          28

          17

          (1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對“延遲退休年齡政策”的支持度有差異;

          45歲以下

          45歲以上

          總計(jì)

          支持

          不支持

          總計(jì)

          (2)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng).現(xiàn)從這8人中隨機(jī)抽2人

          ①抽到1人是45歲以下時(shí),求抽到的另一人是45歲以上的概率.

          ②記抽到45歲以上的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

          參考數(shù)據(jù):

          0.100

          0.050

          0.010

          0.001

          2.706

          3.841

          6.635

          10.828

          ,其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖為我國數(shù)學(xué)家趙爽3世紀(jì)初在為《周髀算經(jīng)》作注時(shí)驗(yàn)證勾股定理的示意圖,現(xiàn)在提供5種顏色給其中5個(gè)小區(qū)域涂色,規(guī)定每個(gè)區(qū)域只涂一種顏色,相鄰區(qū)域顏色不同,則區(qū)域涂色不相同的概率為  

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知常數(shù),函數(shù).

          (1)討論在區(qū)間上的單調(diào)性;

          (2)存在兩個(gè)極值點(diǎn),,的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面,,點(diǎn)為棱的中點(diǎn).

          1)證明:

          2)求直線與平面所成角的正弦值;

          3)若為棱上一點(diǎn),滿足,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某單位對員工業(yè)務(wù)進(jìn)行考核,從類員工(工作3年及3年以內(nèi)的員工)類員工(工作3年以上的員工)的成績中各抽取15個(gè),具體數(shù)據(jù)如下:

          類成績:20 10 22 30 15 12 41 22 31 25 12 26 29 32 33

          類成績:21 40 30 41 42 31 49 51 52 43 47 47 32 45 48

          1)根據(jù)兩組數(shù)據(jù)完成兩類員工成績的莖葉圖,并通過莖葉圖比較兩類員工成績的平均值及分散程度(不要求計(jì)算出具體值,得出結(jié)論即可);

          2)研究發(fā)現(xiàn)從業(yè)時(shí)間與業(yè)務(wù)能力之間具有線性相關(guān)關(guān)系,從上述抽取的名員工中抽取4名員工的成績?nèi)缦拢?/span>

          員工工作時(shí)間(單位年)

          1

          2

          3

          4

          考核成績

          10

          15

          20

          30

          根據(jù)四個(gè)的數(shù)據(jù),求關(guān)于的線性回歸方程.

          附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點(diǎn)分別為、,且,橢圓經(jīng)過點(diǎn).

          1)求橢圓的方程;

          2)直線過橢圓右頂點(diǎn),交橢圓于另一點(diǎn),點(diǎn)在直線上,且.,求直線的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,四邊形為直角梯形,,,上一點(diǎn),的中點(diǎn),且,現(xiàn)將梯形沿折疊(如圖2),使平面平面.

          1)求證:平面平面.

          2)能否在邊上找到一點(diǎn)(端點(diǎn)除外)使平面與平面所成角的余弦值為?若存在,試確定點(diǎn)的位置,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知分別為雙曲線的左、右焦點(diǎn),點(diǎn)P是以為直徑的圓與C在第一象限內(nèi)的交點(diǎn),若線段的中點(diǎn)QC的漸近線上,則C的兩條漸近線方程為__________

          查看答案和解析>>

          同步練習(xí)冊答案