日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          設函數f(x)=|x2-2x|.
          (1)畫出f(x)=|x2-2x|在區(qū)間[-1,4]上函數f(x)的圖象;并根據圖象寫出該函數在[-1,4]上的單調區(qū)間;
          (2)試討論方程f(x)=a在區(qū)間[-1,4]上實數根的情況,并加以簡要說明.
          分析:(1)去絕對值寫出分段函數,然后利用二次函數作出部分草圖,并由圖象得到函數在[-1,4]上的單調區(qū)間;
          (2)利用轉化思想方法,結合圖象得到方程f(x)=a在區(qū)間[-1,4]上實數根的情況.
          解答:解:(1)f(x)=|x2-2x|=
          x2-2x,(-1≤x≤0或2≤x≤4)
          -x2+2x,(0<x<2)

          圖象如圖:

          函數的減區(qū)間為[-1,0),[1,2);
          函數的增區(qū)間為[0,1),[2,4].
          (2)方程f(x)=a在區(qū)間[-1,4]上實數根,
          即函數y=f(x)的圖象與函數y=a的圖象在區(qū)間[-1,4]上交點的橫坐標.
          由圖象看出:a<0或a>8時,方程無實數根;
          3<a≤8時,方程有一個實數根;
          a=0或1<a≤3時,方程有兩個實數根;
          a=1時,有三個實數根;
          0<a<1時,方程有四個實數根.
          點評:本題考查了函數圖象的作法,考查了數學轉化思想方法,訓練了利用圖象判斷根的存在性及根的個數,是中檔題.
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          設函數f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
          (3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          設函數f(x)的定義域為A,若存在非零實數t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調函數.如果定義域為[0,+∞)的函數f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調函數,那么實數m的取值范圍是( 。
          A、[-5,5]
          B、[-
          5
          5
          ]
          C、[-
          10
          ,
          10
          ]
          D、[-
          5
          2
          ,
          5
          2
          ]

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2012•深圳一模)已知函數f(x)=
          1
          3
          x3+bx2+cx+d
          ,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設g(x)=x
          f′(x)
           , m>0
          ,求函數g(x)在[0,m]上的最大值;
          (3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          設函數f(x)是定義在R上的偶函數,且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
          f(-
          3
          4
          ) <f(
          15
          2
          )
          ;
          ②當x∈[-1,0]時f(x)=x3+4x+3;
          ③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構成一個無窮等差數列;
          ④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
          其中真命題的個數為( 。

          查看答案和解析>>

          科目:高中數學 來源:徐州模擬 題型:解答題

          設函數f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
          (3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案