日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線方程為x2=2py(p>0),其焦點為F,點O為坐標(biāo)原點,過焦點F作斜率為k(k≠0)的直線與拋物線交于A,B兩點,過A,B兩點分別作拋物線的兩條切線,設(shè)兩條切線交于點M.
          (1)求
          (2)設(shè)直線MF與拋物線交于C,D兩點,且四邊形ACBD的面積為 ,求直線AB的斜率k.

          【答案】
          (1)解:設(shè)直線AB方程為

          聯(lián)立直線AB與拋物線方程

          ,得x2﹣2pkx﹣p2=0,

          則x1+x2=2pk,x1x2=﹣p2

          可得 =x1x2+y1y2=x1x2=x1x2+(kx1+ )(kx2+

          =(1+k2)x1x2+ + (x1+x2

          =(1+k2)(﹣p2)+ + 2pk=﹣ p2


          (2)解:由x2=2py,知 ,

          可得曲線在A,B兩點處的切線的斜率分別為 ,

          即有AM的方程為 ,BM的方程為 ,

          解得交點 ,

          ,知直線MF與AB相互垂直.

          由弦長公式知,|AB|=

          = =2p(1+k2),

          代k得, ,

          四邊形ACBD的面積 ,

          依題意,得 的最小值為 ,

          根據(jù) 的圖象和性質(zhì)得,k2=3或 ,


          【解析】(1)設(shè)出直線AB的方程,代入拋物線的方程,運用韋達(dá)定理和點滿足直線方程,由向量的數(shù)量積的坐標(biāo)表示,化簡即可得到所求值;(2)求得切線的斜率和切線的方程,運用弦長公式,可得|AB|,|CD|,求得四邊形ABCD的面積,運用對勾函數(shù)的性質(zhì),解方程可得k的值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB、PA、PBC分別為⊙O的切線和割線切點ABD的中點,AC、BD相交于點E,ABPE相交于點F,直線CF交⊙O于另一點G、PA于點K.

          證明:(1)KPA的中點;(2)..

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】f(x)=
          (1)用直尺或三角板畫出y=f(x)的圖象;
          (2)求f(x)的最小值和最大值以及單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列函數(shù)中在 上為減函數(shù)的是(
          A.y=2cos2x﹣1
          B.y=﹣tanx
          C.
          D.y=sin2x+cos2x

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4﹣1:平面幾何
          如圖AB是⊙O的直徑,弦BD,CA的延長線相交于點E,EF垂直BA的延長線于點F.

          (1)求證:∠DEA=∠DFA;
          (2)若∠EBA=30°,EF= ,EA=2AC,求AF的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,是兩條不同直線,,是兩個不同平面,則下列命題正確的是 ( )

          A. ,垂直于同一平面,則平行

          B. ,則

          C. ,不平行,則在內(nèi)不存在與平行的直線

          D. ,不平行,則不可能垂直于同一平面

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)P(x0,y0)是函數(shù)f(x)圖象上任意一點,且y02≥x02,則f(x)的解析式可以是_____.(填序號)

          ①f(x)=x﹣②f(x)=ex﹣1(e≈2.718,是一個重要常數(shù))③f(x)=x+④y=x2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定義域為的函數(shù)是奇函數(shù).

          (1)求實數(shù)的值;

          (2)判斷的單調(diào)性并用定義證明;

          (3)已知不等式恒成立, 求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)求的單調(diào)區(qū)間;

          (2)對任意的, ,恒有,求正實數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案